- ID
- 1194301
- Banca
- CESPE / CEBRASPE
- Órgão
- STF
- Ano
- 2013
- Provas
- Disciplina
- Estatística
- Assuntos
Considere que a amostra aleatória simples X1, X2, ..., Xn tenha sido retirada de uma distribuição exponencial com função de densidade na forma f(x) = λexp(–λx), em que x > 0 e λ > 0. Com relação a essa amostra e à inferência estatística, julgue o item que se segue.
A função de distribuição acumulada da estatística de ordem
X(n) = max{X1, X2, ..., Xn} é P(X(n) ≤ x) = 1 -e-λnx .