f(x) = λ exp(-λx)
- Agora, vamos mostrar que W ~ Exp (λ = ln(2))
f(w) = ln(2)*2^(-w)
f(w) = ln(2)*exp (2^(-w))
f(w) = ln(2)*exp(-w * ln(2))
λ = ln(2)
f(w) = λ*exp(-w*λ)
f(w) = λ*exp(-λ*w)
A densidade de W é igual a densidade da exponencial, então W ~ Exponencial (λ = ln(2)).
- f(w) = ln(2)*2^(-w) = λ*exp(-λ*w), em que λ = ln(2)
- 2 * P(w> k+1) = 2 * [1 - P(w<= k+1)] = 2 - 2* P(w<= k+1)
P(w<= k+1) = integral de (λ* exp(-λw)), no intervalo de 0 a k+1
P(w<= k+1) = - exp(- λw), no intervalo 0 a K+1
P(w<= k+1) = 1 - exp(-λ(k+1))
2 * P(w> k+1) = 2 * [1 - P(w<= k+1)] = 2 - 2* P(w<= k+1) = 2 - 2* [1 - exp(-λ(k+1))]
= 2 * exp(-λ(k+1)) = 2 * exp (ln(2^( -(k+1) ) ) = 2* 2^( - (k+1) )
= 2 * 2^(-k) * 2^(-1) = 2^(-k)
2 * P(w> k+1) = 2^(-k)
P(w<= k) = integral de (λ* exp(-λw)), no intervalo de 0 a k
P(w<= k) = - exp(- λw), no intervalo 0 a K
P(w<= k) = 1 - exp(-λk)
P(w> k) = 1 - P(w<= k) = 1 - (1 - exp(-λk) ) = exp(-λk) = exp (ln(2^( -k ) ) ) = 2^( -k )
P(w> k) = 2^( -k )
Logo, concluímos que 2 * P(w> k+1) = P(w> k) = 2^( -k )