-
COMBINAÇÃO SIMPLES!
NO PRIMEIRO QUARTO - COMBINAÇÃO DE 8, 2 a 2 = 28
NO SEGUNDO QUARTO - COMBINAÇÃO DE 6, 2 a 2 = 15
NO TERCEIRO QUARTO - COMBINAÇÃO DE 4, 2 a 2 = 6
NO QUARTO QUARTO - COMBINAÇÃO DE 2, 2 a 2 = 1
28 X 15 X 6 X 1= 2520.
ESPERO TER AJUDADO!
-
Como formaremos grupos em que a ordem não importa, usaremos a ferramente da COMBINAÇÃO. Vamos Lá!
Primeiro quarto: C8,2 = 8.7/2 = 28
Segundo quarto: C6,2 = 6.5/2 = 15
Terceiro quarto: C4,2 = 4.3/2 = 6
Quarto quarto: C2,2 = 1
Multiplicando os resultados obtidos em cada combinação:
28.15.6.1 = 2520
Gab. B
-
Grupo de 8 amigos
Grupo 1 -> Combinação de 8 escolhe 2 = 28. Para o segundo quarto irá sobrar 6 amigos
Grupo 2 -> Combinação de 6 escolhe 2 = 15. Para o terceiro quarto irá sobrar 4 amigos
Grupo 3 -> Combinação de 4 escolhe 2 = 6. Para o quarto irá sobrar 2 amigos
Grupo 4 -> Combinação de 2 escolhe 2 = 1
28 x 15 x 6 x 1= 2520
Gabarito B
-
N ! /( N-P)! . P ! Fórmula.
8 x 7 x 6! / 6! x 2! = cortar vermelho.
56/2= 28.
Agora aplica nos outros.
-
combinação 8,4=70
a questão não fala em maneiras distintas, então não importa a ordem entre eles, nesse caso eu multipliquei por 8
70*8=630
agora a ordem do quarto também não importa ou seja multipliquei por 4
630*4=2520
ou combinação simples como os amigos explicaram. Espero ter ajudado!
-
GABARITO: B
Primeiro quarto: C8,2 = 8.7/2 = 28
Segundo quarto: C6,2 = 6.5/2 = 15
Terceiro quarto: C4,2 = 4.3/2 = 6
Quarto quarto: C2,2 = 1
Multiplicando os resultados obtidos em cada combinação:
28.15.6.1 = 2520