-
Gabarito: LETRA D
A probabilidade dele ganhar pelo menos um jogo é 1 subtraído da probabilidade de ele não ganhar nenhum jogo.
Para ele perder os três jogos, a probabilidade é:
0,4 x 0,4 x 0,5 = 0,08.
Assim, a probabilidade de ele ganhar pelo menos um jogo é:
1 – 0,08 = 0,92 = 92%.
-
Gabarito: D
Calculando a probabilidade de PERDER os 3 jogos fica:
P = 0,4 x 0,4 x 0,5 = 0,080
P = 8%
Fazendo a probabilidade complementar (se ele NÃO perder os 3 jogos terá ganhado pelo menos um dos jogos):
P + P’ = 100%
P’ = 100 – 8
P’ = 92%.
-
https://youtu.be/uvUkm5fXPRU
Segue o vídeo da explicação do prof @diogo_di_
Com ênfase na APRENDIZAGEM do conteúdo e não na simples resolução da questão.
Segue lá o canal e se tiverem mais sugestões de questões da amada matemática só pedir nos comentários do canal no youtube.
Muita força nos estudooos!!
Questões do vídeo: Q1770388 / Q1770391 / Q1770393
-
quando aparecer na questão [chance de que aconteça pelo menos...] opte por calcular a probabilidade disso não acontecer. falo por experiência...
chance de perder: 4/10 . 4/10 . 5/10 = 80/1000 → 0,08 equivale à 8%
100% total - 8% perder = 92% mínimo para poder ganhar
-
O mais fácil é começar pelas chances de perder:
Casa = 60% (40% perder)
Fora = 50% (50% perder)
2 jogos casa e 1 fora = 0,4 * 0,4 * 0,5 = 0,08
Transformando em % = 0,08 * 100 = 8
100 - 8 = 92% de chance de ganhar.
GAB D
-
chances dele perder todas.
0,4 × 0,4 × 0,5 = 0,080
0,080 x 100= 8%
8% é a probabilidade de perder os 3 jogos.
logo a probabilidade dele ganhar pelo menos 1 jogo será 92%.
O mais difícil é perder os 3 jogos, mas ganhar 1 jogo pelo menos é bem mais facil
-
Começa pelo que ele não quer ou seja perder todas
Perder é 40%
em decimal fica 0.4x0.4x0,5=0.8
100% - 0.8=92%
letra "D"
Bons estudos
-
Resolução:
https://youtu.be/5hY837ukWW0
-
TEIMOSIA!!
VALEU PROF MARCIO FLAVIO!!!
-
-
Questão resolvida detalhadamente nessa postagem do Instagram
https://www.instagram.com/p/CYg3jl-rRrA/?utm_source=ig_web_copy_link
Aproveite para seguir o instagram @jcmaulas, mais de 1000 questões resolvidas detalhadamente no feed.
Postagens diárias.