-
alguem sabe me explicar?
-
Passaram-se 5 meses então deu um juros de 10% certo? Eu utilizei as respostas no caso deu 6600 pois 12600-6600=6000 e 10% de 6000 é 600 reais ou seja dá os mesmos 6600 que ele deu de entrada ao irmão.
-
Jovens, seguinte:
Valor da venda = 12 600
* Como houve juros, não podemos deduzir que é só dividir as parcelas (daria 6 300) e caso resolvido.
As parcelas foram iguais, ou seja 2x = 12 600 + J (note bem, precisamos de considerar os juros da aquisição)
continuemos:
2x = 12 600 + (12 600 - x)*0,2*5
2x = 12 600 + (12 600 - x)*0,1
2x= 12 600 + (12 60 -0,1x)
2x+0,1x = 12 600 + 1 260
2,1x = 13 860
13 860/2,1 = x
6 600 = x
Alternativa E
* Adaptado de um comentário não identificado no Brainly
-
Vou chamar de "x" a 1ª parcela e de "y" o restante
O irmão de Gabriel pagou a primeira parcela,
E o restante ele dividiu em 5 meses a juros de 2% a.m. E o resultado foi igual a 1ª parcela, logo,
x = y + y . 0,02 . 5 Ou, seja (restante + (restante . Juros . Tempo) é igual a 1ª parcela) fazendo a conta ficará: x = 1,1y
O montante pago foi igual a:
Juros = 12600 . 0.02 . 5 = 1260
Montante = 12600 + 1260 = 13860
A equação ficará:
13860 - x = y (Isso representa: 13860 menos a 1ª parcela que é igua ao restante a ser pago)
Como sabemo que x = 1,1y (como vimos acima)
Então é só formar a equação fazendo as substituições
13860 - 1,1y = y ( o que está em negrito representa o "x")
- 1,1y - y = - 13860
- 2,1y = - 13860 (-1)
y = 13860 / 2,1
y = 6.600
Alternativa "C"
-
A resposta correta é Letra C
V1 o valor da primeira parcela;
V2 o valor da segunda parcela;
SD o saldo devedor (SD = 12600 - V1);
J o valor de juros (J = SD * i * t);
i a taxa de juros mensal (i = 2/100 = 0,02);
t o total de meses (t = 5);
V1 + V2 = 12600 + J
do enunciado, V2 = V1
V1 + V1 = 12600 + [(12600 - V1) * 0,02 * 5]
2*V1 = 12600 + (12600 - V1) * 0,1
2*V1 = 12600 + 12600 * 0,1 - 0,1 * V1
2*V1 + 0,1*V1 = 12600 + 1260
2,1 * V1 = 13860 ---> V1 = 13860/2,1 = 6600
-
x = (12600 - x) + (0,02 x 5) (12600 - x)
x = (12600 - x) + 0,1 (12600 - x)
x = 12600 - x + 1260 - 0,1x
2,1x = 13860
-
1° pagou x
Depois pagou (12600-x).1,1
x = (12600-x).1,1
x = 6.600
-
Não entendi porque a resposta não é a letra E.
Alguém poderia explicar?
-
A dívida inicial era de 12.600 reais, mas como foi pago um valor Y (primeira
parcela no ato da compra), a dívida ficou em 12.600 – Y. Esta dívida rendeu juros
simples de j = 2%am durante t = 5 meses, chegando ao valor da segunda parcela,
que também foi Y. Isto é,
M = C x (1 + jxt)
Y = (12.600 – Y) x (1 + 0,02x5)
Y = (12.600 – Y) x (1 + 0,10)
Y = (12.600 – Y) x (1,10)
Y = 12.600x1,10 – 1,10Y
Y + 1,10Y = 13.860
2,10Y = 13.860
Y = 13.860 / 2,10
Y = 6.600 reais
-
Vamos lá, para que formula... vamos entender o que a questão pede.
Primeiramente ele vendeu o carro ao irmão e o mesmo pagou a primeira parcela no ato da compra, e a proxima ficou com 2% ao mês com juros simples, após 5 meses o irmão pagou e acabou sendo o mesmo valor que a primeira parcela...
vamos usar as alternativas.
Capital= 12.600, o irmão pagando = 6.600, sobra 6.000 para pagar não é isso ?
portanto 2%x 5meses= 10%, quanto é 10% de 6.000 ?= 600, logo o valor da primeira e da segunda parcela foram iguais, portanto alternativa (C)
Obs: Podem testar com as outras alternativas, não bate.
-
É de uma forma diferente dos outros,mas,deu a mesma reposta !
M=12,600
C=6300 =6300(1+0,02x5) =8316/126
I=2% =0,02 =6300.1,32 = 66 = 6600 Letra C
T=5 =8316,00
-
Melhor comentário.
Guilherme Generozo
-
Pessoal, em concurso público a agilidade na resolução de questões é importante. Nessa questão, utilizar as alternativas é a melhor saída. Contas simples, como os juros são simples, fica 10% (2% x 5 meses), fica fácil de fazer de cabeça. Cálculos rápidos chegam à conclusão:
12.600 - 6.600 = 6.000
6.000 x 10% = 600
6.600 (valor com juros) = 6.600 (valor primeira parcela).
-
Kaio TH, simples e objetivo. Melhor resposta!!!
-
1ª parcela = 12.600 - C
Montante = 1ª parcela -> M = 12.600 - C
i = 2% a.m.
n = 5 meses
Logo,
M = C + J
J = C.i.n
12.600 - C = C + C.i.n
12.600 - C = C + C .0,02.5
12.600 = C + 0,1C + C
C = 12.600/2,1
C = 6.000,00
Valor da 1ª parcela
12.600 - 6.000 = 6.600
Alternativa C
-
Resolvi de uma maneira mais extensa.
O montante que procuramos ao qual incidirá o juros é a segunda parcela, por isso temos que 12.600-C (1ª parcela) = C (2ª parcela) + os juros, logo:
12.600 - C = C + C. i. T
12.600 - C = C + C. 0,02. 5
12.600 - C = C + C. 0,1
12.600 - C = C + 0,1C
12.600 = C + C + 0,1C
12.600 = 2,1C
12.600/2,1 = C
C = 6.000
Sabendo-se que o valor da 2ª parcela é de 6.000, calcula-se o valor do juros sobre o mesmo:
J = C. I. T
J = 6.000. 0,02. 5
J = 6.000. 0,1
J = 600
Sendo assim, o valor da parcela será de 6.000 + 600 = 6.600
Gabarito "C"
-
6000 X 10 = 6600.
-
Explicação simples e direta:
1) A primeira parcela "x" está na data zero, então deve-se retirar do valor principal o valor da primeira parcela .
12.600 - x
2) Iguale estes valores à segunda parcela "x". (porém, a segunda parcela deve ser trazida para a data zero. Quando trazemos uma parcela do futuro para uma data anterior nós dividimos).
12.600 - x = x / (1+0,02 x 5)
3) Resolva o que está dentro do parêntese.
o resultado será 1,1
4) Agora multiplica cruzando:
1,1. (12.600 - x ) = x
13.860 - 1,1 x = x ( passa os valores de x para um só lado da equação)
2,1 x = 13.860
x = 13.860 / 2,1
x = 6.600
-
RESOLUÇÃO:
A dívida inicial era de 12.600 reais, mas como foi pago um valor P (primeira parcela no ato da compra), a dívida ficou em 12.600 – P. Esta dívida rendeu juros simples de j = 2%am durante t = 5 meses, chegando ao valor da segunda parcela, que também foi P. Isto é,
M = C x (1 + jxt)
P = (12.600 – P) x (1 + 0,02x5)
P = (12.600 – P) x (1 + 0,10)
P = (12.600 – P) x (1,10)
P = 12.600x1,10 – 1,10P
P + 1,10P = 13.860
2,10P = 13.860
P = 13.860 / 2,10
P = 6.600 reais
Resposta: C
-
Sem mistério, bora lá!
Considere que 5 meses a 2% temos 10%;
(12600-P) . 1,10 = P
13860 -1,10 = P
2,10P= 13860
P=13860/2,10
P=1386000/210
Simplificando por 30
P=46200/7
P=6600
Obs: se pegar a equação inicial e substituir pelas alternativas é muito mais rápido!
Força guerreiros!
-
No início da questão temos:
Gabriel vendeu um carro para seu irmão por R$ 12.600,00.
Leiam: Gabriel pretendia vender um carro para seu irmão pelo valor de R$ 12.600,00. Pois na verdade, incluindo os juros, o carro foi vendido por R$ 13.200,00.
-
considere x = valor de entrada, assim (12600 - x) é o que ele ainda precisaria pagar SE NÃO HOUVESSE JURO, porém há juro, portanto esse valor vai aumentar quando ele for pagar o restante da dívida ao irmão.
Daí é como se ele tivesse pegado emprestado com o irmão um valor de (12600 - x), já que ele , teoricamente, levou o carro pra casa. Foi estipulado um juro de 2% ao mês e se sabe que o comprador levou 5 meses para pagar ao irmão, portanto ele pagará ao irmão o capital inicial (aquilo que ele pegou emprestado), ou seja, (12600 - x) MAIS o juro total que rendeu nesses 5 meses, de quanto é esse juro? Ora, j = C x i x t , assim: j = (12600 - x) . 0,02 . 5 = 1260 -0,1x, se esse é o juro acumulado, então eu preciso somá-lo ao capital inicial que me foi emprestado, ou seja, aos (12600 - x), assim eu devolverei ao meu maninho um total de:
(12600 - x) + (1260 - 0,1x) --> é o que eu pagarei ao meu irmão, oxe, mas que raio de valor é esse???
________
pra transformar essa expressão num valor absoluto, eu preciso utilizar a última informação dado pela questão, ela diz que , coincidentemente, a ENTRADA (se lembra dela?) de X reais acabou por ser IGUAL ao valor pago pelo resto da dívida (a nossa expressão acima), portanto essa informação nos permite equacionar:
x = (12600 - x) + (1260 - 0,1x)
x = 13860 + -1,1x
x + 1,1x = 13860
2,1x = 13860
x = 13860/2,1
x = 6600
-