O Teorema central do limite afirma que quando o tamanho da amostra aumenta, a distribuição amostral da sua média aproxima-se cada vez mais de uma distribuição normal. A média de uma amostra de {\displaystyle n} elementos de uma população tende a uma distribuição normal. Pode-se pensar de forma empírica que ao nos distanciarmos da média, a probabilidade de ocorrência diminui, ou seja, é mais provável ocorrer um evento que se encontra próximo da média do que um evento de um dos extremos. Além disso, uma distribuição pode ganhar a forma de curva normal se possuir diferentes combinações para cada resultado possível do espaço amostral. Isso é válido (em se tratando de amostras discretas), para amostras suficientemente grandes da população. O suficientemente grande, varia de acordo com a população, para populações com distribuição quase simétrica, a amostra pode ser menor do que para populações cuja distribuição seja assimétrica. A curva normal obtida pode então ser convertida em uma curva binomial ou em uma curva de Poisson, e posteriormente pode-se ainda realizar uma correção de continuidade. A precisão da correção de continuidade também pode ser medida. Assim, é permitido inferir sobre a população através da média amostral e do desvio padrão amostral. Se extraíssemos todos os elementos da população, os dados sobre a amostra seriam exatamente iguais aos da população
Fonte: https://pt.wikipedia.org/wiki/Teorema_central_do_limite