A = ∫ (0 to π/2) min{sin x, cos x} dx
Sabendo que min{sin x, cos x} = { sin x, se cos x =< sen x
{ cos x, caso contrário
A = ∫ (0 to π/4) sin x dx + ∫ (π/4 to π/2) cos x dx
A = [-cos x] (0 to π/4) + [sin x] (π/4 to π/2)
A = -cos(π/4) + cos(0) + sin(π/4) - sin(π/2)
A = -(sqrt2)/2 + 1 + 1 - (sqrt2)/2
A = 2 - sqrt2