sen(b)=0,8 sen(a)=0,6 sen(2b+a)=?
Para encontrar o cosseno usaremos a RELAÇÃO FUNDAMENTAL DA TRIGONOMETRIA:
sen^2(x)+cos^2(x)=1
sen^2(b) + cos^2(b) = 1
(0,8)^2 + cos^2(b) = 1
cos^2(b) = 1 - 0,64
cos(b) = 0,6
Fazendo o mesmo procedimento com "a" encontramos que cos(a) = 0,8.
Agora vamos descobrir quanto vale sen(2b):
sen(2b) = sen(b+b) = sen b . cos b + sen b . cos b
ou seja
sen(2b) = 2.senb.cosb
sen(2b) = 2 . 0,8 . 0,6 logo: sen(2b) = 0,96
Agora vamos descobrir quanto vale cos(2b):
cos(2b) = cos(b+b) = cos b . cos b - sen b . sen b
ou seja
cos(2b) = cos^2(b) - sen^2(b)
cos(2b) = (0,6)^2 - (0,8)^2 logo: cos(2b) = - 0,28
agora finalmente sen(2b+a):
sen(2b+a) = sen(2b) . cos(a) + sen(a) . cos(2b)
sen(2b+a) = 0,96 . 0,8 + 0,6 . (-0,28)
sen(2b+a) = 0, 768 - 0,168
sen(2b+a) = 0,600
alternativa:A