SóProvas


ID
2437336
Banca
IBADE
Órgão
PC-AC
Ano
2017
Provas
Disciplina
Raciocínio Lógico
Assuntos

Considere que todo e qualquer termo da sequência a baixo pode ser representado por an, com n ∈ N* Desta forma temos a1 sendo o primeiro termo desta sequência, a2 sendo o segundo termo desta mesma sequência e assim sucessivamente.

(3,4,20,21,105,106,...)

Seguindo a lógica utilizada na construção desta sequência, pode-se afirmar que a7 + a9 vale:

Alternativas
Comentários
  • A sequência segue a lógica (+1; x5; +1; x5) . Logo na ordem a sequencia fica 3, 4, 20, 21, 105, 106, 530, 531, 2655. 2655+530 = 3185. Letra A.

  • Por que x5 alguem me explica?

  • Negócio fácil desse pra Delegado, eu em, GABARITO LETRA  A  para a galera não assinante. Tiger Girl, n ∈ N* : n pertencente aos números naturais sem o zero,  reparando a seguência, o primeiro termo sempre soma 1 com o segundo, e o segundo multiplica por 5 o terceiro, e por assim vai sucessivamente. É só você fazer as contas, bem simples.

     

  • Gabarito A

     

    3, 4 (multiplicar 4 x 5)

    20, 21 (somar 1 o resultado de 4x 5 e multiplicar novamente por 5) 

    105, 106 (repetir a mesma operação)

    530, 531

    2655, 2656

     

    Somando o sétimo termo e o nono termo temos: 530 + 2655 = 3185

  • GABARITO A - Vou tentar explicar de uma forma didática pros colegas entenderem usando cores. A lógica é sempre multiplicar o segundo termo da sequência (que soma +1 do 1º termo) por 5 e encontrar o primeiro termo da próxima sequência. 2º termo pintei de vermelho / 1º termo pintei de verde.

    3,    4,   20,   21,   105,   106..., 530,   531, 2655   

    X 5=20 

    21 X 5= 105

    106 X 5= 530

    531 x 5 = 2655 

    logo a7 + a9= 2655 + 530 = 3185

     

    Fé em Deus e prossigamos para o alvo!

     

     

  • Errei a questão, mas depois refletindo sofre as respostas dos colegas, percebi que para resolver o problema temos que encontrar as diferenças entre cada termo. No problema apresentado as diferenças são soma + 1 e multiplicação X 5, assim, apliquei a tabela abaixo:

    a1=3 + 1=4

    a2=4 X 5= 20

    a3= 20 + 1= 21

    a4= 21 X 5= 105

    a5= 105 + 1= 106

    a6= 106 x 5= 530

    a7= 530 + 1= 531

    a8= 531 x 5= 2655

    a9= 2655

    a7 530 + a9 2655 = 3185

     

  • Gabarito: LETRA A

     

    A sequência consiste em somar 1 ao termo antecendente e multiplicar por 5 para obter o número posterior, alternadamente. Assim:

    a1= 3

    a2 = a1 + 1 = 3+1 = 4

    a3 = a2 x 5 = 4 x 5 = 20

    a4 = a3 + 1 = 20+1 = 21

    a5 = a4 x 5 = 21 x 5 = 105

    a6 = a5 + 1 = 105+1 = 106

    a7 = a6 x 5 = 106x 5 = 530

    a8 = a7 + 1 = 530+1 = 531

    a9 = a8 x 5 = 531x5 = 2655

     

    Logo, a soma entre a7 e a9corresponde a 530 + 2655 = 3185.

  • Temos um exemplo claro de PA e PG. O 2º termo é igual a soma do anterior +1 (aqui podemos obter esse resultado tirando a razão: R: 4-3=1) porém percebam que o termo seguindo é maior do que o anterior e que não da para usar a mesma lógica de somar o termo anterior +1 (PA). Portanto, uma das formas de procurar a razão do termo seguinte é: 20/4 = 5, sendo assim, iremos multiplicar o 2º termo x 5 = 20 (PG).

    E assim atribuimos os valores corretos, conforme já explicitado pelos colegas.

  • soma + 1 x 5

    a1) 3+1=4                         a2) 4x5=20

    a3) 20+1=21                    a4) 21x5=105

    a5) 105+1=106                 a6) 106x5=530

    a7) 530+1=531                  a8) 531x5=2655

    a9) 2655                             LOGO: a7 + a9 (531 + 2655 = 3185) 

  •  (3,4,20,21,105,106,...)

    Razão da PA = 2º termo - 1º termo (4 - 3 = 1)

    Razão da PG = 3º termo / 2º termo (20 / 4 = 5)

     

    Depois é só seguir a sequência: calcula PA, depois PG e assim sucessivamente:

     

    A1 =  3

    A2 =  3 + 1 = 4

    A3 =   4 x 5 = 20

    A4 =   20 + 1 = 21

    A5 =   21 x 5 = 105

    A6 =   105 + 1 =106

    A7 =   106 x 5 = 530

    A8 =    530 + 1 = 531

    A9 =    531 x 5 = 2655

     

    A questão pede o A7 + A9 = 530 + 2655 = 3185

  • A1=3

    A2=A1+1

    A3=A2x5

    A4=A3+1

    A5=A4x5

    A6=A5+1

    A7=A6x5

    A8=A7+1

    A9=A8x5

  • Questão padrão IBADE!

     

  • depois que descobre a lógica fica fácil o problema é como descobrir essa lógica esse é o mal do examinador, além de vc saber o conteúdo vc ainda tem que pensar o que o examinador pensa, ou seja, tem que comprar uma doutrina de cabeça do examinador, dificil viu, quem souber onde vende me fala! acho que assim eu passo em concurso 

     

  • A LOGICA DESSA QUESTÃO É MULTIPLICAR POR CINCO( 5) E SOMAR COM U (1).

    DESSA FORMA A7+A9 = 3185



  • Comentário: Conforme os termos expressos, verifica-se que a sequência (3, 4, 20, 21, 105, 106, ...) apresenta o seguinte padrão lógico “aumenta 1; multiplica por 5”. Veja:

    1º termo (a1) = 3

    2º termo (a2) = 3 + 1 = 4

    3º termo (a3) = 4 . 5 = 20

    4º termo (a4) = 20 + 1 = 21

    5º termo (a5) = 21 . 5 = 105

    6º termo (a6) = 105 + 1 = 106

    Assim, os próximos termos são obtidos quando seguimos o padrão lógico acima. Daí, temos:

    7º termo (a7) = 106 . 5 = 530

    8º termo (a8) = 530 + 1 = 531

    9º termo (a9) = 531 . 5 = 2655

    Solução: a7 + a9 = 530 + 2655 = 3185.

    GABARITO: LETRA A

     

    Sou professor de Matemática e RLM e posto vídeos todos os dias em meu instagram com dicas e bizus dessas disciplinas. Quem quiser conferir, segue lá:

    Instagram: @profjuliocesarsantos

  • Resolvo essa questão aqui nesse vídeo

    https://youtu.be/5959g-AH4c0

    Ou procure por "Professor em Casa - Felipe Cardoso" no YouTube =D