SóProvas


ID
2638915
Banca
FGV
Órgão
TJ-AL
Ano
2018
Provas
Disciplina
Estatística
Assuntos

De um lote de 12 processos, três serão sorteados para fins de avaliação por parte do Conselho Nacional de Justiça (CNJ). Em cinco dos processos originais houve condenação do réu, e nos demais, absolvição.


Assim, a probabilidade de que a maior parte dos processos a serem sorteados seja de absolvições é igual a:

Alternativas
Comentários
  • 1º Caso: 3 absolvições > (7/12)*(6/11)*(5/10)

    +

    2º Caso: 2 absolvições e 1 condenação > (7/12)*(6/11)*(5/10)*3, pois não importa a ordem dos 3 elementos

     

    Total = 14/22 ou 7/11


  • ABSOLVIÇÃO X ABSOLVIÇÃO X CONDENAÇÃO
             7/12 X 6/11 X 5/10 = 210/1320
    ABSOLVIÇÃO X CONDENAÇÃO X ABSOLVIÇÃO
             7/12 X 5/11 X 6/10 = 210/1320
    CONDENAÇÃO X ABSOLVIÇÃO X ABSOLVIÇÃO
             5/12 X 7/11 X 6/10 = 210/1320
    ABSOLVIÇÃO X ABSOLVIÇÃO X ABSOLVIÇÃO
             7/12 X 6/11 X 5/10 = 210/1320

     

    4[210/1320] = 14/22
     

  • Eu não entendi o porquê do *3 no 2º caso apresentado por ti, Erildo Cavalcante... Poderia explicar?

    Eu fiz assim:


    Como o enunciado informa que "a maior parte dos processos sorteados" são absolvições, então infere-se que, no mínimo, dentre os 3 sorteados, 2 serão 'absolvições'. Fazendo o cálculo das probabilidades, tem-se:


    (7/12 * 6/11 * 10/5) = 14/22


    Como há duas opções (absolvidos ou condenados), por serem 'antagônicos', inverto a ordem da fração que representa o 3º número sorteado (ao invés de ficar 5/10, ficará 10/5), pois estou pressupondo que possa ser uma condenação, já que os 2 primeiros números sorteados eu inferi que fossem "absolvições".