- ID
- 3019141
- Banca
- IBADE
- Órgão
- Câmara de Jaru - RO
- Ano
- 2019
- Provas
- Disciplina
- Português
- Assuntos
Einstein tinha razão
Os buracos negros são há muito tempo as superestrelas da ficção científica. Mas a sua fama hollywoodesca é um pouco estranha porque ninguém tinha visto um — pelo menos até agora. Para quem precisa de ver para crer, pode agradecer ao Event Horizon Telescope (EHT), que acabou de nos oferecer a primeira imagem direta de um buraco negro. Este feito notável exigiu uma colaboração global para transformar a Terra num gigante telescópio e captar um objeto a milhares de trilhões de quilômetros.
Sendo assombroso e inovador, o projeto do EHT não é apenas um desafio. É na verdade um teste sem precedentes para ver se as ideias de Einstein sobre a própria natureza do espaço e do tempo se confirmam em circunstâncias extremas, e lança o olhar mais próximo que obtivemos até hoje sobre o papel dos buracos negros no universo.
Para resumir: Einstein tinha razão.
Um buraco negro é uma zona do espaço cuja massa é tão grande e densa que nem sequer a luz consegue escapar à sua atração gravitacional. Capturá-lo contra o fundo negro do além é uma tarefa quase impossível. Mas graças ao trabalho inovador de Stephen Hawking, sabemos que estas massas colossais não são apenas um abismo de onde nada sai. Os buracos negros são capazes não só de emitir grandes jatos de plasma, como a sua gravidade imensa também puxa fluxos de matéria para o seu núcleo.
Quando a matéria se aproxima do horizonte de eventos de um buraco negro — o ponto a partir do qual nem a luz escapa — esta forma um disco orbital. A matéria neste disco converte alguma da sua energia em fricção entre as partículas. Isto aquece o disco, tal como nós aquecemos as mãos esfregando-as num dia frio. Quanto mais próxima estiver a matéria, maior a fricção. A matéria mais próxima do horizonte de eventos irradia um grande brilho ao atingir o calor de centenas de sóis. Foi esta luz que o EHT detectou, junto com a "silhueta" do buraco negro.
Analisar estes dados e produzir uma imagem é uma tarefa hercúlea. Como astrônomo que estuda os buracos negros em galáxias distantes, é raro eu conseguir obter uma imagem clara sequer de uma estrela nessas galáxias, muito menos do buraco negro no centro delas.
A equipe do EHT decidiu concentrar-se em dois dos buracos negros supermassivos mais próximos de nós — na grande galáxia em forma de elipse M87, e em Sagitário A, no centro da nossa Via Láctea.
Para dar uma ideia da dificuldade da tarefa: embora o buraco negro da Via Láctea tenha uma massa de 4,1 milhões de sóis e um diâmetro de 60 milhões de quilômetros, ele encontra-se a 250 614 750 218 665 392 quilômetros de distância da Terra — o equivalente a ir de Londres a Nova Iorque 45 trilhões, ou milhões de milhões de vezes. Como a equipe do EHT comentou, isto é como estar em Nova Iorque a tentar contar os sulcos de uma bola de golfe em Los Angeles, ou fotografar uma laranja na lua a partir da Terra.
Para fotografar um objeto tão impossivelmente distante, a equipe do EHT precisaria de um telescópio tão grande como a própria Terra. Não existindo uma máquina desse tamanho, a equipe ligou entre si telescópios por todo o mundo e combinou os dados recolhidos por eles. Para captar uma imagem precisa a uma tal distância, os telescópios tinham de ter grande estabilidade e as suas leituras sincronizadas na perfeição.
Para atingir este feito, a equipe usou relógios atômicos tão precisos que a cada 100 milhões de anos perdem apenas um segundo. Os 5 mil Terabytes de dados recolhidos ocuparam centenas de discos duros que tiveram de ser transportados e ligados fisicamente a um supercomputador, que corrigiu as diferenças de tempo nos dados e produziu a imagem do buraco negro.
(Por Kevin Pimbblet, professor de Física da Universidade de Hull –
Texto adaptado)
“Os 5 mil Terabytes de dados recolhidos ocuparam centenas de discos duros QUE tiveram de ser transportados e ligados fisicamente a um supercomputador...” (último §).
O QUE destacado tem valor morfossintático correto em: