- ID
- 1548112
- Banca
- UniCEUB
- Órgão
- UniCEUB
- Ano
- 2014
- Provas
- Disciplina
- Matemática
- Assuntos
Dada uma função com domínio D, ela possui inversa se, e somente se, for bijetora. Partindo dessa premissa, nem todas as funções trigonométricas possuem inversas em seus domínios de definição, já que para um valor da função correspondem infinitos valores de
x (x = 2kπ, k ∈ Z). Porém nós podemos tomar subconjuntos desses domínios D para gerar novas funções que possuam inversas.
Vejamos: A função inversa de
f, denominada arco cujo seno, definida por f -1 : [ -1; +1] → [ -π/2; + π/2] , é denotada por f -1 ( x ) = arcsen ( x ) e a função inversa de g, denominada arco cujo cosseno, definida por g-1 : [ -1 ; + 1] → [ 0 ; π ] , é denotada por g-1 ( x ) = arccos ( x ). Sendo assim, podemos afirmar que os gráficos das funções f -1 (x) e g-1( x ) são, respectivamente,