SóProvas


ID
184873
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2010
Provas
Disciplina
Matemática
Assuntos

Quando os alunos perguntaram ao professor qual era a sua idade, ele respondeu: "Se considerarmos as funções f(x) = 1 + log3x e g(x) = log2x, e a igualdade g(i) = f(243), i corresponderá à minha idade, em anos." Quantos anos tem o professor?

Alternativas
Comentários
  • logb a = X é o mesmo que bx = a

    f(243) = 1+ log3 243 => f(243) =1+ (3X =243) --> x=5 => f(243) = 6

    g(i) = f(243) então

    g(i) = log2i=6

    i=64

  • Gabarito= 64

    g(i)=log2i
    f(243)=1+log3243

    Obs= 243=35    

    log2i=1+log3243                            
    log2i=1+log3(3)5
    log2i=1+5log33
    log2i=1+5.1
    log2i=6
    i=2
    i=64

  • f(x) = 1 + log[3] x e g(x) = log[2] x    Se g(i) = f(243) é só trocar os valores.
    log[2] i = 1 + log[3] 243  =>   243 = 3^5
    log[2] i = 1 + log[3] 3^5  =>  log[b] a^z = z*log[b] a
    log[2] i = 1 + 5*log[3] 3   =>  log[b] b = 1 (base e logaritmando com mesmo valor sempre será 1)
    log[2] i = 1 + 5*1
    log[2] i = 6   => log[b] a = x => b = x^a
    i = 2^6

    i = 64

    S: { 6 }

                 

  • Em primeiro lugar calcule f(243) 

    f(x) = 1 + log3 x 

    f(243) = 1 + log3 243 

    Como, 

    243 = 3.3.3.3.3 = 3^5 

    f(243) = 1 + log3 3^5 

    f(243) = 1 + 5 log3 3 {Propriedade da potência de logaritmo} 

    f(243) = 1 + 5.1 { log3 3 = 1 pois, quando o logaritmando é igual a base o logaritmo vale 1} 

    f(243) = 1 + 5 

    f(243) = 6 

    Agora use a segunda equação, 

    g(x) = log2 x . Como g(i) = f(243) 

    g(i) = log2 i 

    g(i) = f(243) = 6 

    6 = log2 i 

    Pela definição de logaritmo, 

    Se 6 = log2 i i = 2^6 

    i = 2.2.2.2.2.2 

    i = 64=> alternativa (E)

  • Usando as propriedades dos logaritmos:

    f(x) = 1 + log3(x)

    g(x) = log2(x)

    g(i) = f(243) 

    Sabemos que f(243) = f(35) = 1 + log3(35) = 1 + 5log3(3) = 1 + 5 = 6

    Assim g(i) = log2(i) = f(35) = 6, logo:

    log2(i) = 6 → i = 26 = 64 anos


    Resposta: Alternativa E.
  • no final ele disse: f(243).

    logo, f(x) -> f(243)

    f(x) = 1 + log3(243)

    x=1+5

    x=6

    ________________________________________

    g(x) = log2x

    log2(x) = 6

    x=64 ∵2^6=64