- ID
- 1917577
- Banca
- Exército
- Órgão
- EsFCEx
- Ano
- 2010
- Provas
- Disciplina
- Raciocínio Lógico
- Assuntos
Sobre funções de uma variável complexa, analise as afirmativas abaixo e, a seguir, assinale a alternativa correta.
I - f : U → C uma função analítica. Seja zo ∈ U tal que f (zo) = 0 e f não é identicamente nula numa vizinhança de zo . Então zo é um ponto isolado de f-1(0).II - Sejam f , g : U → C duas funções analíticas em U , onde U é aberto e conexo. Se f e g coincidem num subconjunto A de U com ponto de acumulação em U então f = g em U .
III - Se f é holomorfa no aberto U ⊂ C e sua derivada f' : U → C é contínua, então f não é localmente lipschitziana em U.
IV. Sejam f , g : U → C duas funções analíticas em U , onde U é aberto e conexo. Se f . g ≡ 0 então f ≡ 0 ou g ≡ 0.
V. Uma função holomorfa num aberto U ⊂ C , é lipschitziana em qualquer sub conjunto convexo X de U, onde a sua derivada seja limitada.