SóProvas


ID
1941808
Banca
Marinha
Órgão
CEM
Ano
2013
Provas
Disciplina
Física
Assuntos

Um projétil é lançado para cima a partir do solo e sua velocidade inicial forma um ângulo de 45° graus com a horizontal. Quando o projétil atinge a altura de 10m, sua trajetória forma um ângulo de 30° com a horizontal. A componente horizontal da velocidade inicial do projétil, em m/s, é

Considere a aceleração da gravidade g=10m/s2.

Alternativas
Comentários
  • Alguém poderia me falar se posso considerar o angulo de 30 ° com o vetor velocidade e daí resolver a questão?

  • João Vítor, o que você precisa fazer para resolver essa questão é calcular o tempo necessário para que o móvel atinja a altura de 10 m. Feito isto, parta para o cálculo da velocidade vertical neste instante. Depois, calcule o módulo da velocidade neste mesmo tempo, sabendo que Vy = V*sen(30°). Por fim, calcule a velocidade horizontal, que permanece constante ao longo de toda a trajetória, sabendo que Vx = V*cos(30°).

  • No movimento oblíquo, temos um MUV na vertical e um MRU na horizontal. No início do movimento tg 45º = Vy/Vx = 1, ou seja, Vx = Vy. Quanto o objeto atinge 10m de altura a relação de Vx e Vy vale: tg 30 = Vy/Vx, logo: Vy = (raiz(3)Vx/3. Pela equação de torricelli para Vy expressa em função de Vx, encontramos a LETRA B como resposta. (Vx = 10raiz(3))

  • Em x, o movimento é MRU, então a componente Vx é a mesma em todo percurso: Vx(t0) = V0cos45 e Vx(t1) = V1cos30;

    Daí você encontra V1 em função de V0, e resolve a equação de torricelli para Vy: (Vy1)^2=(Vy0)^2-2g(Δy) , onde Δy=10.

    Depois encontra V_0 fazendo Vy0 = V0sen45 e Vy1=V1sen30 (V1 aqui fica em função de V0 a partir da equação da componente Vx)

    E por fim acha Vx0 = V0cos45.

  • i, o ângulo θ varia junto com y; quando y for máximo θ=0;

    ii, ângulo θ variou 15° e y variou 10m

    dy/dθ=10/-π/12 --> dy/dθ=-120/π

    Int[ymáx,10](1)dy=int[0,π/6](-120/π)dθ

    Ymáx (altura máxima)=30 metros.

    Por Torricelli,

    vfy^2-vo^2=2.g.ymáx

    Vo=10raiz(6) m/s

    Componente horizontal= vo.cos(45°)

    Componente horizontal= 10raiz(3) m/s

    Gabarito B.

    Há também o método por geometria:

    Posição inicial, vox=voy; posição de 30°, vy=tan(30°)vx.

    Por Torricelli, vy^2-voy^2=2.10.g

    (Tan(30°))^2.vx^2-(10raiz(6))^2=-200

    vx=10raiz(3).