SóProvas


ID
208297
Banca
VUNESP
Órgão
TJ-SP
Ano
2009
Provas
Disciplina
Matemática
Assuntos

No tanque completamente vazio de um carro bicombustível, foram colocados 9 litros de gasolina e 15 litros de álcool. Num segundo momento, sem que o carro tivesse saído do posto, foram colocados mais alguns litros de álcool, e a razão entre o número de litros de álcool e o número de litros de gasolina contidos no tanque passou a ser de 3 para 1. O número de litros de álcool colocados nesse segundo momento foi

Alternativas
Comentários
  • Molezinha:

    No primeiro abastecimento a proporção de gasolina e álcool, respectivamente, é de 9/15.

    Em um segundo momento é adicionado uma quantidade X de álcool que altera a proporção para 3 partes de álcool e 1 de gasolina. Ora, se sabemos que agora a quantidade de álcool é o triplo da quantidade de gasolina e a quantidade desta ainda são os mesmos 9 litros iniciais, concluimos que a quantidade de álcool no tanque é 3*9, ou seja, 27 litros de álcool.

    Como a questão pergunta qual é o número de litros de álcool colocados nesse segundo momento, basta subtrairmos os 27 litros atuais pelos 15 litros iniciais: 27-15= 12

    Pronto!

    ALTERNATIVA C

    Mais fácil do que isso é só ganhar do Gremio de Porto Alegre mesmo! :D

  • Alternativa C

    A = 15

    G = 9

    A/G=3/1. Queremos saber quanto de álcool foi adicionado, então a nossa 2ª esquação será G=3a/1

    Desenvolvendo a questão teremos:

    A + G = 24

    A + 3a/1 = 24

    4A = 24

    A = 24/4

    A = 6

    Substituimos o valor de A na nossa 2ª equação:

    G = 3a/1

    G = 3x6

    G = 18

    A questão pede o número de litros de álcool que foi adicionado ao carro, então teremos, o valor da gasolina - o valor do álcool = 18-6 = 12

  • GABARITO C

    Sem complicar:

    A questão nos da a informação que a razão de alcool é 3 para 1 certo?

    Não foi colocado gasolina. Então ainda contem 9 litros.

    Então se a cada 9 litros de gasolina eu tenho 3 vezes mais de alcool, é só multipicar e subtrair:

    3x9 = 27 litros total de alcool

    15 litros no primeiro momento

    27-15 = 12 litros colocados

    RACIOCINOU, FEZ DUAS CONTAS DE PRIMARIO E MATOU A QUESTÃO!!!

    NÃO PRECISAMOS FAZER FRAÇÃO, PORCENTAGEM... 
    ASSIM PERDEMOS TEMPO
  • Basta resolver a proporção abaixo =)

    15 + x
    ------ = 3
      9 
     
    15 + x = 27
    x = 27 -15
    x = 12
  • 1º) momento:Tota(ll): 15Al + 9 Gasolina=24
    2º) momento: Tota(ll): 3Al + 1 Gasolina=4

    Achar o MMC(24;4)= 24

    Eqivalência:1º) momento:(MMC) /total=24/24=(1): 15 x(1)Al + 9 x (1) Gas.=24;

    2º) momento: (MMC) /total=24/4=(4) ...3 x(4 )Al + 1x (4) Gas.=12 +4 =16;

    A questão pede a quantidade de Alcool do 2º momento que é 12 litros.

    Essa questão poderia ter pedido a razão dos dois momentos:Al/G=27/13
  • Antes: 9 l de gasolina +  15 l de álcool 

    Depois: 9 l de  gasolina +  ( 15 + x )l de  álcool

     (15 + x ) / 9  =  3 / 1
    15 + x = 27
    x = 12

  • 15+x = 3*9
    x =27-15
    x =12
  • Temos em primeiro momento:

    9 litros de gasolina.

    15 litros de álcool.

    Num segundo momento foi adicionado mais álcool até que a proporção de álcool para gasolina chegue a 3 para 1.

    9 x 3 = 27, temos que colocar um tanto de álcool a mais nos 15 litros para que chegue em 27 litros...

    27-15=12.


    Pronto, alternativa C

  • COLOCA O K QUE A SOLUÇÃO VEM!

    3/1 fração correspondente ao tanque do carro depois de preenchido pela 2°vez.

    3K

    1K

    Portanto: 3K+1K = 4K

    3.4= 12

    Alternativa letra C

  • A razão entre o número de litros de álcool e o número de litros de gasolina contidos no tanque passou a ser de 3 para 1

    Álcool / Gasolina = 3/1

    15 + X / 9 = 3/1 (Multiplica cruzado)

    27 = 15 + X

    X = 12