SóProvas


ID
2676742
Banca
FGV
Órgão
Banestes
Ano
2018
Provas
Disciplina
Matemática
Assuntos

Um número natural N possui dois algarismos. Multiplicando esse número por 3 e depois subtraindo 15 do resultado encontra-se 99.


A soma dos algarismos de N é:

Alternativas
Comentários
  • Fiz assim: 99+15=114. apos dividi 114/3=38= 3+8=11.

  • (N * 3) - 15 = 99 

    3N - 15 = 99 

    3N = 99 + 15 

    3N = 114 

    N = 114/3 

    N = 38 

    3 + 8 = 11 

  • Nesse caso so e executa a operação inversa 99+15=114         114/3=38                        3+8=11.

  • 1º : Some 99 + 15 = 114

    2º : Teste quais números multiplicados por 3 dá esse resultado, qual seja = 38

    3º : 3+8 = 11 (Resultado).

  • N*3-15=99

    3N=99+15

    3N=114

    N=114/3

    N=38

    SOMA=11

  • https://youtu.be/7_yZ4353GGM

  • Usei o princípio da regressão ou regressão que até então não sabia do que se tratava, e está no meu edital do IDIB para a prova do CREMERJ. Aprendi com o professor Jadiel que encontrei por acaso no youtube. Quem também quiser aprender é só clicar no seguinte link: https://www.youtube.com/watch?v=7_zhuQoTxAA&t=494s

    A questão diz que um número natural N possui dois algarismos, e que depois esse número é multiplicado por 3, e depois subtraindo 15 do resultado encontra-se 99. A questão quer saber a soma dos algarismos de N, vamos lá!

    Se N para chegar a 99 foi multiplicado por 3 e depois subtraido 15, para se chegar a N eu tenho que fazer o inverso, eu vou somar 15, dividir 3, e o resultado foi 38, mas ATENÇÃO, como a questão quer a soma dos algarismos de N, 3+8= 11. Simples assim! Espero ter ajudado! Bons estudos, e não desistam nunca!

  • Se não quiser fazer a equação, é só ir voltando na questão, claro, trocando os sinais pelos seus opostos:

    99+15 = 114

    114/3 = 38

    Soma dos algarismos (3 + 8 = 11)

    GAB C