SóProvas


ID
2677711
Banca
Marinha
Órgão
EAM
Ano
2018
Provas
Disciplina
Matemática
Assuntos

Considerando-se todos os divisores naturais de 360, quantos NÃO são pares?

Alternativas
Comentários
  • 1 3 5 9 15 45

    Usei a lógica de fazer a divisão do número 50 em ordem decrescente até o número 1.

  • se você não sabe ver os divisores naturais vê este vídeo: https://www.youtube.com/watch?v=Pf8yeqH4sao

  • fatoração + divisores

           | 1

    360 | 2  | 2

    180 | 2  | 4

    90 | 2    | 8

    45 | 3    | 3, 6, 12, 24

    15 | 3    | 9, 18, 36, 72

    5 | 5      | 5, 10, 20, 40, 15, 30, 60, 120, 45, 90, 180, 360

    Os 24 divisores de 360 são: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360

    SÃO IMPARES NESTA DIVISÃO1, 3, 5, 9, 15, 45 logo, são 6 números;

    Letra A!

  • Se liga nesse BIZU!!!!

    1°) faz a decomposição do numero 360

    360 | 2

    180 | 2

    90 | 2

    45 | 3

    15 | 3

    5 | 5

    1 = 2^3 x 3^2 x 5

    Como a questão quer os divisores não pares, ou seja, ela quer os divisores ímpares...faz assim:

    2°) soma 1 unidade aos expoentes dos números ímpares da decomposição e depois multiplica o resultado entre eles:

    Em relação ao 3 --> +1 ao expoente (2+1) = 3

    Em relação ao 5 --> +1 ao expoente (1+1) = 2

    Agora é só multiplicar: 3 x 2 = 6 divisores ímpares.

    Letra A.

    Bons estudos!

    Insta/Face: @prof.rlm.kaka

    Youtube: prof. kaka

  • Boa noite tem como ter uma outra forma de fazer essa questão ?