SóProvas


ID
2884279
Banca
IDECAN
Órgão
CRF-SP
Ano
2017
Provas
Disciplina
Arquitetura
Assuntos

O intuito das teorias de proporções é criar um sentido de ordem e harmonia entre os elementos de uma composição visual. Uma razão se refere à comparação quantitativa de duas coisas semelhantes, enquanto a proporção se refere à igualdade de razões. Subjacente a um sistema de proporcionalidade, portanto, está a razão característica, uma qualidade permanente que é transmitida de uma razão para outra. Assim, um sistema de proporcionalidade estabelece um conjunto coerente de relações visuais entre as de um edifício, assim como entre as partes e o todo. Embora tais relações possam não ser imediatamente percebidas pelo observador casual, a ordem visual que criam pode ser percebida, aceita ou mesmo reconhecida através de uma série de experiências repetitivas. Após um certo período de tempo, podemos começar a ver o todo na parte, e a parte no todo. Diversas teorias de proporções “desejáveis” foram desenvolvidas no decorrer da história da arquitetura. A noção de elaborar um sistema de projeto e comunicar seus meios é comum em todos os períodos. Embora o sistema real varie de tempos em tempos, os princípios envolvidos e seu valor para o arquiteto permanecem os mesmos. Assinale a alternativa que contém um grupo de Teorias da Proporção.

Alternativas
Comentários
  • Rindo até 2057!!!!!!!!!!

  • SEÇÃO ÁUREA: A proporção áurea ou seção áurea é muitas vezes associada à harmonia estética na arquitetura e na arte em geral. O conceito remonta há muito tempo atrás. Inclusive, os gregos já o conheciam e usavam.

    MAS EM QUE CONSISTE A PROPORÇÃO ÁUREA? Matematicamente falando, a proporção áurea é uma constante real algébrica irracional. Ela é obtida quando dividimos uma reta em dois segmentos de forma que o segmento mais longo da reta dividida pelo segmento menor seja igual à reta completa dividida pelo segmento mais longo. O valor da proporção áurea é constituído por 1,6180339887… ou, arredondando, 1,6180.

    A PROPORÇÃO ÁUREA NA ARQUITETURA CONTEMPORÂNEA A arquitetura contemporânea continuou a usar a proporção áurea em diferentes estruturas. Le Corbusier na década de 40, desenvolveu um sistema de proporções chamado Modulor. Este sistema projetava a proporção de alturas baseada na proporção áurea. Fonte:

    ORDENS CLÁSSICAS: As 5 ordens da arquitetura clássica: Criadas pelos gregos e romanos, grandes construtores da Antiguidade, as cinco ordens clássicas foram durante muito tempo uma parte inseparável da arquitetura. É, portanto, um conhecimento básico de Arquitetura Clássica, seja para arquitetos ou estudantes.

    Em linhas gerais, há cinco ordens clássicas arquitetônicas: dórica, jônica e coríntia, de caráter grego e ainda, as ordens toscana e compósita, de caráter romano. As diferenciações a cada uma das nomenclaturas são evidenciadas na composição e/ou ornamentação dos capitéis – extremidade superior da coluna, responsável por transferir os esforços do entablamento ao fuste e descarregá-los sobre a base e/ou estilobata. Junto ao capitel, há outros elementos constituintes das ordens clássicas – cornija, friso, frontão, epistilo, fuste, pódio e estilobata. Cada um destes elementos é único. Sendo assim, são usados em estruturas específicas e em momentos precisos. As ordens usadas pelos gregos eram essencialmente construtivas. Os romanos, por outro lado, usam como elementos puramente decorativos, sem qualquer valor estrutural. Apesar disso, continuavam usando-as construtivamente nas colunadas de fóruns e templos.

    MODULOR: O modulor foi um sistema de proporções elaborado e largamente utilizado pelo arquiteto franco-suíço Le Corbusier. O sistema surgiu do desejo de seu autor de não converter ao sistema métrico decimal as unidades como pés e polegadas. Ao invés disso, Le Corbusier passou a se referenciar a medidas modulares baseadas nas proporções de um indivíduo imaginário (inicialmente com 1,75 m e mais tarde com 1,83 m de altura). O sistema foi mais tarde elaborado baseando-se na proporção áurea e na seqüência de Fibonacci...

    https://pt.wikipedia.org/wiki/Modulor

    @cabide.concurseira