-
Identidade Trigonométrica:
sen²x + cos²x = 1
(8/17)² + cos²x = 1
cos²x = 1 - 64/289
cos²x = 225/289
cosx = 15/17
-
Temos como resolver esta questão montando o nosso famoso triângulo retângulo. Sabendo que o Sen(x) = Cateto Oposto/Hipotenusa, e Cos(x) = Cateto Adjacente/Hipotenusa, será necessário obter o valor do cateto adjacente. Logo: Hipotenusa² = C.Oposto²+C.Adjacente² ----> 17² = 8² + C.Adjacente² ----> C.Adjacente = √225 = 15. Então teremos que Cos(x) = 15/17. Lembrando que no enunciado ele fala que o arco é do primeiro quadrante... Isso é importante pois no 1º quadrante tanto o seno quanto o cosseno são positivos... Caso ele tivesse dito no 2º quadrante, o cosseno seria negativo.
Abraço galera. Bons estudos.
-
seno é cateto oposto / hipotenusa
8/17
8=cateto oposto
17=hipotenusa
No primeiro quadrante todos são positivos , assim eliminamos ''A'' e ''B''
Cosseno é cateto adjacente/hipotenusa
Nem precisa calcular pois a única alternativa que tem ''17'' como hipotenusa E ''positivo'' é a C
GAB C
-
E ai, tudo bom?
Gabarito: C
Bons estudos!
-É praticando que se aprende e a prática leva á aprovação.