-
A equivalência do se então é negar tudo e inverter, ou tirar o se então negar a primeira colocar o ou e manter a segunda.
GABARITO.C
-
Gabarito C
Temos que negar as duas proposições e trocando-as de lugar, assim temos uma contrapositiva.
Se Roberta NÃO é enfermeira OU Ana NÃO é psicóloga, então Marcos NÃO é engenheiro
-
A VUVU vem utilizando bastante o NEGA NEGA TROCA TROCA
Gab C
-
Assertiva C
Se Roberta não é enfermeira ou Ana não é psicóloga, então Marcos não é engenheiro.
-
Equivalência da Condicional:
I) mantém a Condicional, e volta negando: ~(RE ^ AP) --> ~ME
que fica: ~RE v ~AP --> ~ME (que, por sinal, é a resposta)
Ou
II) nega a Primeira + OU + mantém a Segunda: ~ME v RE ^ AP
-
LETRA C
-
Primeiro isolamos o conectivo principal:
[ A ] --> [ B v C ]
A equivalência lógica do "Se... Então" é dada pela regra "Nega, nega, troca, troca", na qual nega-se as proposições e então as inverte de lugar.
Assim, temos que negar "[ A ]" e temos que negar "[ B v C ]",e inverter a posição delas (em relação ao "se... então").
Para negar "A", basta invertermos seu valor lógico. Logo, temos "~A".
Para negar [ B v C ], temos que inverter o valor lógico de ambas as proposições, e substituir o conectivo por "e" (^). Logo, temos: [~B ^ ~C].
Assim, negando ambas as proposições, tem-se o seguinte: [ ~A ] --> [ B ^ C ].
Agora, para a segunda parte da equivalência, temos que inverter as proposições de lugar.
Logo, como resultado final, temos:
[ ~B ^ ~C ] --> [ ~A ].
Gabarito: C (Se Roberta não é enfermeira ou Ana não é psicóloga, então Marcos não é engenheiro).
-
Pessoal, nessa questão, ainda que não soubesse nada de lógica, fazendo a opção na alternativa que tem (OU), já seria suficiente para acertar. Nas questões de SE ENTÃO, não precisa nem inventar. Pediu equivalência, tem que ter vai na alternativa que tem (OU). Claro, se aparecer mais de 1 alternativa com (OU), aí seria preciso, realmente, uma exegese melhor.
-
Contrapositiva.
P --> Q ///// (voltando) ~Q ==> ~P
Bons estudos.
-
Inverte e nega.
É preciso ter disciplina pois nem sempre estaremos motivados.
-
Macetes para a equivalência do Se-> Então = Cruza e nega ou Volta negando. No caso acima, como foi utilizado o conectivo "e" na segunda afirmação, precisamos negá-lo, transformando-o em "ou".
-
Contrapositiva!
-
-
Na EQUIVALÊNCIA DO "SE,... ENTÃO" há duas formas:
PRIMEIRA: inverte e nega tudo.
SEGUNDA: nega a primeira, tira o "se,.. então", bota o "OU" e repete a segunda sem negar!!!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
PRIMEIRA: ~q ---> ~p
SEGUNDA: ~p v q
OBS: na alternativa terá uma das duas formas, nunca as duas juntas.
-
Temos no enunciado a condicional “p -> (q e r)”, onde:
p = Marcos é engenheiro
q = Roberta é enfermeira
r = Ana é psicóloga
Uma das equivalências válidas para essa condicional é dada pela condicional “ ~(q e r) -> ~p “. A negação da conjunção “q e r” é dada pela disjunção “~q ou ~r”, logo temos que “ ~(q e r) -> ~p “ é igual a “~q ou ~r” -> ~p”, em que:
~p = Marcos não é engenheiro
~q = Roberta não é enfermeira
~r = Ana não é psicóloga
Assim, podemos concluir que a afirmação do enunciado é equivalente a “Se Roberta não é enfermeira ou Ana não é psicóloga, então Marcos não é engenheiro”. Temos isso na alternativa C, portanto ela é o gabarito da questão.
Resposta: C
-
gaba c
-
GABARITO B
Equivalência da condicional:
Nega Tudo - Inverte a ordem - mantém o "se...então".
Se Marcos é engenheiro, então Roberta é enfermeira e Ana é psicóloga
=
Se Roberta não é enfermeira ou Ana não é psicóloga, então Marcos não é engenheiro.
-
A um tempo atrás teria que rabiscar para resolver estas questões, hoje consigo resolver de cabeça e em poucos segundos, nunca desistam, estudar sempre vale a pena.
#PCSP