SóProvas


ID
3526075
Banca
Aeronáutica
Órgão
EEAR
Ano
2019
Provas
Disciplina
Matemática
Assuntos

Se sen x + cos x = 7/13 e se tg x = -5/12, então, no ciclo trigonométrico, x pertence ao _______ quadrante.

Alternativas
Comentários
  • Sen(x) = a;

    Cos(x) = b.

    a + b = 7/13 ----> a = 7/13 - b ----> a = (7-13b)/13

    a/b = -5/12 ----> a = -5/12 × b ----> a = -5b/12

    a = a ----> (7-13b)/13 = -5b/12 ----> 12×(7-13b) = 13×-5b ----> 84 - 156b = - 65b ----> 84 = -65b + 156b ----> 84 = 91b ------> b = Cos(x) = 84/91

    Sen(x) + Cos(x) = 7/13 ----> Sen(x) + 84/91 = 7/13 ----> Sen(x) = 7/13 - 84/91 ----> o mmc será 91 ----> Sen(x) = (49-84)/91 ----> Sen(x) = - 35/91

    Cos(x) = 84/91 ----> valor positivo

    Sen(x) = - 35/91 -----> valor negativo

    Como o cosseno é positivo e o seno é negativo, o ângulo X pertence ao QUARTO QUADRANTE.

    Alternativa D.

  • Não entendi

  • Gab D

    outra forma de fazer,

    senx = 7/13 - cosx

    joga o senx e o cosx na tgx que vale - 5/12

    fznd isso só haverá cosx e você encontrará o valor de cosx que é +12/13.

    Perceba o sinal positivo do cosx. Os quadrantes q ele fica positivo são 1º e 4º

    agr substitui cosx na equação do senx. Vc achará q senx = -5/13

    Perceba o sinal negativo do senx. Os quadrantes q ele fica negativo são 3 e 4º

    Agr a tgx. Veja q ela é -5/12, ou seja, um valor negativo. Os quadrantes q ela fica negativa são 2º e 4º...

    Ql quadrante está em todos? O 4º. É lá que o x está.

    É isso...