SóProvas


ID
5140498
Banca
CONTEMAX
Órgão
Prefeitura de Mataraca - PB
Ano
2020
Provas
Disciplina
Raciocínio Lógico
Assuntos

Considere as seguintes afirmações

  • Alguns Greens são Bartons
  • Alguns Bartons são Lasters e Arns
  • Nem todo Laster é Arn, mas todo Arn é Laster
  • Nenhum Green é Laster

Então, é necessariamente incorreto:

Alternativas
Comentários
  • Para resolver essa questão, comece pelo TODO, depois pelo NENHUM. se começar pelo algum vai demorar para entender

  • Resolvi mais demorei. Será que não poderia aplicar a tabela para agilizar?

  • A questão diz que são afirmações, logo tomaremos por base que todo conteúdo dela é verdadeiro e aquilo que for o oposto as afirmativas é incorreto. São as afirmativas:

    • Alguns Greens são Bartons
    • Alguns Bartons são Lasters e Arns
    • Nem todo Laster é Arn, mas todo Arn é Laster
    • Nenhum Green é Laster.

    Analisando as alternativas:

    A) Nenhum Laster é Green => nenhum Green é Laster

    B) Alguns Bartons são Greens => alguns Greens são Bartons

    C) Existem Bartons que não são Arns => alguns Bartons são Lasters e Arns

    D) Alguns Arns são Bartons => Como na letra C, repare que não há contradição em dizer que alguns Arns são Bartons, pois a afirmativa da questão deixa claro que alguns Arns podem ser Bartons, como também podem não ser.

    E) Existem Greens que são Arns => nao é possível chegar a esta conclusão, visto que a afirmativa trazida na questão diz que todo Arn é Lester.

    Repare ainda que algumas palavras das afirmativas se repetem nas alternativas consideradas corretas, isto porque são EQUIVALENTES.

    ALGUM é equivalente a: ALGUM, EXISTE ALGUM, PELO MENOS UM.

    Na alternativa E, EXISTEM não é é equivalente a TODO, pelo contrário, a negação de TODO é: "EXISTE", "PELO MENOS UM","ALGUM", "EXISTE ALGUM".

  • GAB E

    Para uma melhor visualização desenhe conjuntos.

    Antes de tudo saiba:

    • Quando a questão der "Todo", "Algum" e "Nenhum" comece pelo "todo" e pelo "nenhum";
    • Quando a questão falar : Todo A é B, você deve visualizar um conjunto menor "A" dentro de um conjunto maior "B";
    • Quando ela falar : Nenhum A é B, você deve visualizar dois conjuntos distintos e separados;
    • Quando ela falar : Algum A é B, imagine dois conjuntos com uma interseção.

    O desenho:

    http://sketchtoy.com/69546520

  • http://sketchtoy.com/69564761

  • Nenhum Green é Lantern

  • http://sketchtoy.com/69872157

  • E

    http://sketchtoy.com/69908390