-
Atenção, Qconcursos! Matemática não é o forte da maioria de nós, então, por favor, coloquem comentários direcionados e/ou resoluções de professores nos vídeos.
-
Dados do problema:
1728 m2 de área
dividido em duas partes iguais, por uma de suas diagonais.
razão entre as medidas do comprimento e da largura do terreno original é 4/3 ,
perímetro de uma das partes desmembrada é de?
Fiz da seguinte maneira:
Peguei a razão e coloquei o K para encontrar a solução:
4k.3k=1728 (estou multiplicando, pois o 1728 é o valor da área do retângulo)
12k ²=1728
k²= 1728/12
k ²= 144
k= √144
k=12
Agora dá para descobrirmos a largura e o comprimento, pega o 4k--> 4.12= 48 e o 3k-->3.12=36
Tendo em vista que ao dividirmos o retângulo na diagonal vamos obter um triângulo retângulo, já dá para saber o valor do outro lado usando o macete dos triângulos pitagóricos, que nesse caso é 4-3-5, pega o 5 e multiplica por 12 --> 60
Como ele pede o perímetro desse triângulo--> 48+36+60=144
Gabarito: E
Guardem os Triângulos Pitagóricos na cabeça, pois será de muita ajuda na sua prova a fim de evitar o Teorema de Pitágoras e ganhar tempo.:
3-4-5
5-12-13
10-24-26
8-15-17
7-24-25
20-21-29
-
A questão informa que o terreno é retangular e que possui 1728 metros quadrados de área.
Logo, a.b = 1728 metros quadrados.
Observação: A fórmula da área do retângulo é "base x altura".
Em seguida, diz que a razão entre as medidas do comprimento e da largura é 4/3.
Logo, a/b = 4/3
Com essas informações, forma-se um sistema de equações:
a.b = 1728
a/b = 4/3
Fazendo o "b" pro outro lado: a = 1728/b
a/b = 4/3
(1728/b)÷b = 4/3
Fazendo as contas: (1728/b).1/b = 4/3
1728/b ao quadrado = 4/3
4b ao quadrado = 5184
Logo, b = raiz de 1296 = 36
b = 36
Voltando à primeira equação:
a.36 = 1728
Logo, a = 48
Como o terreno foi dividido em uma das diagonais, dois triângulos são formados. Por isso, é possível calcular a hipotenusa, que é a diagonal.
d2 = a2 + b2 -----> d2 = 36 ao quadrado + 48 ao quadrado.
Encontra-se 60.
O perímetro é a soma dos lados.
60 + 36 + 48 = 144
Alternativa E.
Bons estudos, pessoal :)
-
questao muito complexa para um cargo de 2200 reais
-
1)Isole um dos lados:
C=4
L= 3
C=4L/3
_____________________
2)Substitua e depois tire o MMC
C. L = 1728
4L/3 . L = 1728
4L²/3 = 1728
MMC é 3
4L² = 5.184
L² = 5.184/4
L²=1296 (Tire a raiz)
L=36
C.L = 1728
C. 36 = 1728
C=1728/36
C= 48
_____________________
3)Aplicando Pitágoras para acharmos a diagonal
48² + 36² = C²
C= 60
_____________________
4)Perímetro
60+48+36 = 144
Gab E
-
✅ Alternativa E
- O primeiro passo é descobrir a medida real do comprimento e da largura do terreno. Para isso, basta encontrar o MMC entre os números da razão que a questão nos deu (4/3):
4, 3 I 2
2, 3 I 2
1, 3 I 3
1, 1 I MMC: 2 . 2. 3 = 12
- Agora que encontramos o MMC, vamos multiplicar os valores da razão (4/3) por 12 e encontrar o valor real do comprimento e da largura do terreno:
4 . 12 = 48m (comprimento)
3 . 12 = 36m (largura)
- Perceba que, como o terreno foi dividido através de sua diagonal, temos formada a figura de um triângulo, cuja base mede 48m e a altura mede 36m. Para encontrar a diagonal (hipotenusa) e calcular o perímetro precisamos utilizar a fórmula de Pitágoras: (vou deixar um link para vocês conseguirem ver o desenho da forma e o cálculo)
http://sketchtoy.com/69940640
C² = A² + B² (C é a hipotenusa que queremos encontrar, A e B são as medidas da base e da altura)
C² = 48² + 36²
C² = 2304 + 1296
C² = 3600
C = 60m (medida da diagonal)
- Pronto! Agora que já temos as 3 medidas de uma das partes do terreno, basta somar-las para encontrar o perímetro:
48 + 36 + 60 = 144m
-
1728 = 3x*4x
1728 = 12x²
1728/12 = X²
144=X²
X=12
3(12) + 4(12) + 5(12) = 144
-
-
Duas formas:
AT1= 1728/2 = AT2= 864
C = b = 4k
L = h = 3k
AT2= b.h/2 ---- área do triângulo
864= 4k.3k/2
864= 6k
k= 864/6
k= 144
-------
4k+3k= 1728
12k= 1728
k= 1728/12
k= 144
Legislação grifada e Resumo focado no cargo Escrevente do TJSP - atualizado
11973785110
-
https://www.youtube.com/watch?v=tUKsXJT2AK8
QUESTAO TOP DE GEOMETRIA CONFIRAM
CANAL : MATEMÀTICA COM GODOY
-
fiz assim, está dizendo que a razao entre comprimento e largura é 4/3 e que foi dividido em duas partes iguais. Então fiz 1 triangulo retangulo do lado e achei a hipotenusa, que deu 5. somei os lados ( 5+4+3) que dá 12, peguei a área total e dividi por esse numero, deu 144.
-
Gab. E
Veja, o enunciado diz que é um retângulo com área = 1728.
Informa também que:
C = cumprimento
L = largura
C / L = 4 / 3 --> 4L = 3C (multiplica cruzando) --> L = 3C/4
A área do retângulo é C x L = 1728, basta substituir o L.
C x 3C/4 = 1728 --> C x 3C = 1728 x 4 --> 3C² = 6912 --> C² = 2304 --> C = 48.
Se C = 48, então C x L = 1728 --> 48L = 1728 --> L - 1728/48 --> L = 36
Ou seja, descobrimos que L = 36 e C = 48. A questão pede o perímetro do triângulo retângulo formado ao traçar a diagonal do retângulo.
Perceba também que trata-se de um triângulo retângulo semelhante ao triângulo retângulo 3-4-5 (decorar esse triângulo retângulo ajuda muito), pois 3 x 12 = 36, 4 x 12 = 48, logo a hipotenusa será 5 x 12 = 60.
Perímetro é 36 + 48 + 60 = 144.
-
Tomem cuidado pq esse é o tipo de questão que reprova o candidato, não pq é difícil, pq na vdd é muito fácil, porém muito longa que demanda muito tempo, o que fará o candidato deixar de fazer várias questões fáceis!!
-
Área= 1728 metros quadrados
Se eu dividir a area por 4, terei 432 metros.
Só que o exercício pede, o perímetro da parte desmembrada. Então, 432 dividido por 3 (pois a parte desmembrada tem 3 lados).
432/3 = 144 metros.
-
EU FIZ DA SEGUINTE FORMA :
NÃO SEI SE É A FORMÚLA CORRETA, MAS FOI O JEITO QUE EU ACHEI.
O TERRENO DIVIDIDO EM DOIS, FORMAM DOIS TRIANGULOS RETÂNGULOS, COM ÁREA DE 864 M², POIS DIVIDI 1728 M² POR 2.
AI USEI A FORMÚLA DA ÀREA DO TRIANGULO A=b.h/2 , SUBSTITUINDO OS VALORES FICOU 864=b.h/2.
ASSIM FICOU O RESULTADO : b.h = 432.
COMO O TRIANGULO RETANGULO É UM TRIANGULO PITÁGORICO, EU USEI OS VALORES 3, 4 OS CATETOS (b e h) E 5 A HIPOTENUSA.
AÍ É SÓ DIVIDIR 432/4 = 18 ; 432/5 = 86,4 ; 432/3 = 144
COMO A QUESTÃO AFIRMOU QUE ERA POSSÍVEL AFIRMAR UM DOS PERÍMETROS.
GABARITO E.
-
Que questãozinha filha da mãe. Vou nem gastar meu tempo aprendendo isso.
-
Eu fiz assim:
Como um lado é 3, outro 4, a diagonal teria que ser 5
Somei 3k + 4k + 5k = 1728
12k = 1728
k = 144
-
Se a área total é de 1728m² então: Sabendo-se que a razão entre as medidas do comprimento e da largura do terreno original é 4/3. Peguei o 1728/3 = 576. Peguei o 576/4= 144. Se foi sorte não sei, mas só sei que deu certo! kkkk
-
C/L é igual a 4/3 então C vale 4 e L vale 3.
Dividiu o retângulo em diagonal, viraram dois triângulos.
Dois triângulos pitagóricos, um lado vale 3 outro lado vale 4 e hipotenusa 5.
Somando 3 +4+5 = 12. Perímetro é 12 pq somou os valores 3,4 e 5.
Usa o 12 pra multiplicar:
3.12 =36
4.12 = 48
5.12 = 60
Agora soma os resultados = 144.