SóProvas


ID
5306092
Banca
SELECON
Órgão
EMGEPRON
Ano
2021
Provas
Disciplina
Raciocínio Lógico
Assuntos

Sejam A, B e C três conjuntos distintos e não vazios tal que B ∩ C = A. Pode-se afirmar corretamente que C ∪ (B – A) é igual ao seguinte conjunto:

Alternativas
Comentários
  • Gabarito: letra B.

    Vamos criar uma situação e conferir os resultados.

    B = (1,2,3)

    C = (2,3,4)

    B ∩ C = A = (2,3)

    ................................................................................................................................................................................................

    C ∪ (B – A) = (2,3,4) ∪ (1,2,3) - (2,3)

    = (2,3,4) ∪ (1)

    = (1,2,3,4)

    ................................................................................................................................................................................................

    B ∪ C = (1,2,3) ∪ (2,3,4)

    = (1,2,3,4)

  • Se B ∩ C = A, logo

    C ∪ (B – A) = C U ( B - B ∩ C ) = B U C

    Gabarito B.

  • Notemos que B - A é equivalente a tudo de B exceto a intersecção de B com C, e unindo com C, que contém exatamente a parte de A, temos C U (B - A) = B U C. Vejamos as alternativas:

    a) FALSO, seria vazio apenas se B e C fossem vazios, mas não temos informações sobre esses conjuntos.

    b) VERDADEIRO, C união com B - A.

    c) FALSO, o conjunto A faz parte do conjunto C e do conjunto B, não faz sentido ser A U C.

    d) FALSO, o C mas também temos o conjunto B que sobrou de B - A.

    Fonte: Prof Isabelly Camila