SóProvas


ID
531799
Banca
FCC
Órgão
TRT - 4ª REGIÃO (RS)
Ano
2011
Provas
Disciplina
Matemática
Assuntos

Relativamente aos 75 funcionários de uma Unidade do Tribunal Regional do Trabalho, que participaram certo dia de um seminário sobre Primeiros Socorros, sabe-se que:

- no período da manhã, 48% do total de participantes eram do sexo feminino;

- todas as mulheres participaram do início ao fim do se- minário;

- no período da tarde foi notada a ausência de alguns funcionários do sexo masculino e, assim, a quantidade destes passou a ser igual a 3/7 do total de participantes na ocasião.

Nessas condições, o número de homens que se ausentaram no período da tarde é:

Alternativas
Comentários
  • Período da manhã

    48%.( 75) = 0,48.(75) = 36 mulheres

    75 - 36 = 39 homens

    Período da tarde
     
    x =  3x + 36
           7
    7x = 3x + 252
    4x = 252
      x= 63

    Do total de pessoas no período da tarde subtraio o número de mulheres que  permanece o mesmo, tanto pela manhã quanto a tarde

    63 - 36 = 27 homens

    Homens pela manhã -  Homens à tarde = 39 - 27 = 12 homens ausentes



  • Para melhor esclarecimento: _ na parte da tarde, a quantidade de homens é igual 3/7 do total de pessoas presentes naquele período e, não a quantidade de pessoas matriculadas. Por isso a necessidade de se calcular o X.
  • Total de funcionário: 75

    Período da manhã:

    48% mulheres = 36
    52% homens = 39

    Período da tarde:

    3/7  do total de participantes são homens, logo 4/7  são mulheres que participaram em mesmo número do período da manhã.

     como 4/7 = 36 e 36/4= 9     1/7 = 9     então 9x3 = 27 logo 3/7 = 27
                
    reposta se dos 39 homens que deveriam estar presentes no período da tarde apenas 27 estavam, conclui-se que faltaram 12.

    39 - 27 = 12
  • 48% de 75=36 mulheres, logo 39 homens, se 3/7 são homens, logicamente 4/7 são mulheres. E se 4/7=36, eu posso dizer que cada 1/7 é 9. Prosseguindo, se 3/7 são homens e cada 1/7=9, 9x3=27. Daí é só pegar o total que é 39 e diminuir dos 27 que encontro 12.
  • Total: 75
    75 * 0,48 = 36 (Mulheres)

    7/7 - 3/7 = 4/7 (Mulheres) = 0,57

    Logo

    0,57 ---- 36
    0,43 ----- x
    x = 27

    39 - 27 = 12

    Muito Fácil
  • A questão não afirma que todos os homens estavam presentes no período da manhã, então eu não podeira calcular os 48% à partir de todos os 75 funcionários pois alguns dos homens poderiam ter participado apenas do turno da tarde.
    Como não vejo como a questão poderia ser respondida sem considerar que todos os homens estavam presentes no período da manhã, considerei isso mas, acho que caberia anulação da questão.
  • Leia direito o enunciado, a questão fala que 75 funcionários participaram do seminário e desses, 48% eram mulheres...
    Logo, da para entender que os outros 52% eram homens! O número só vai ser alterado no período da tarde.

    A questão não colocou que o restante eram homens pq ja fica claro isso qdo diz a quantidade de mulheres presentes.
  • A base da porcentagem é 100

    100% - 48% = 52%

    Para encontrar a porcentagem aplique a fórmula: P =  C  *  I   /  100

    Onde:

    P = porcentagem
    C = capital
    I = taxa

    P = C * I  / 100
    P = 75 * 52 / 100
    P = 3900 / 100
    P = 39

    O total de homens é 39
    O total de mulheres é 75 - 39 = 36

    Quando o numerador é igual ao denominador temos uma fração aparente, ou seja ela representa  o inteiro 7 / 7 = 1

    7 / 7 - 3 / 7 = 4 / 7

    As mulheres não faltaram.
    36 mulheres corresponde a  4 / 7  do total que compareceram à tarde

    Arme uma regra de três.

    4 / 7 corresponde a 36
    3 / 7 corresponderá a "x"

    Para facilitar a operação aplique a técnica do cancelamento, Elimine 7 de 4 / 7 e 7 de 3 / 7, ficará:

    4  corresponde a 36
    3  corresponderá a "x"

    3 * 36 / 4
    108 / 4
    27

    À tarde compareceram 27 homens.

    39 - 27 = 12

    Faltaram 12 homens.

    Resposta: 12 - letra e



    Resolvendo pela regra de três:

    100% corresponde a 75
    48% corresponderá a "x"

    48 * 75 / 100
    3600 / 100
    36

    Total de mulheres 36
    Total de homens 75 - 36 = 39

    Quando o numerador é igual ao denominador temos uma fração aparente, ou seja, ela representa o inteiro 7 / 7 = 1

    7 / 7 - 3 / 7 = 4 / 7

    Como as mulheres não faltaram, 36 representa  4 / 7 do total que estavam reunidos à tarde.

    O denominador de uma fração indica em quantas partes foram divididas o inteiro e o numerador quantas dessas partes foram consideradas.

    Faça o inverso.
    36 : 4 = 9,  portanto,  1 / 7 corresponde a 9

    Fração dos homens 3 / 7
    9 * 3 = 27

    Homens que faltaram:
    39 - 27 = 12

    Faltaram 12 homens.

    Resposta: 12 - letra e
     
     
     
     
    Ou resolva assim:
     
    75 * 0,48 = 36
     
    Total de mulheres: 36
    Total de homens: 75 – 36 = 39
     
    7 / 7 – 3 / 7 = 4 / 7
     
    4 / 7 corresponde a 36, logo 1 / 7 =  36 / 4 = 9
     
    Compareceram 3 / 7 dos homens, portanto,  9 * 3 = 27
     
    Faltaram:
    39 – 27 =  12
     
    Resposta: faltaram 12 homens,  letra e
  • De acordo com o enunciado, tem-se:

    total de funcionários: 75

    manhã:

    48% do sexo feminino: 0,48 x 75 = 36 mulheres

    sexo masculino: 75 – 36 = 39 homens

    tarde:

    total de funcionários à tarde: t

    homens: 3t/7

    mulheres: 4t/7 = 36 mulheres

    Assim,

    4t = 7x36

    4t = 252

    t = 63 funcionários

    homens: 3t/7 = (3 x 63)/7 = 27 homens

    Finalmente, a diferença é:

    39 – 27 = 12 homens

    Resposta E.


  • Período Manha: Feminino: 48% então 52% é masculino.

    Período Tarde: Se masculino é 3/7 então feminino será 4/7

    Considerando que Todas as mulheres participaram do início ao fim do seminário, teremos uma regra de três:

    4/7 - 36
    3/7 - X 

    4x/7 = (3*36)/7 - Simplifica o 7 ficando:
    4x = 3*36 - Simplifica o 4 com o 36, para facilitar
    x = 3*9 = 27 homens.

    Logo o total de homens que faltaram a tarde será:

    H = 39-27=12

    Resposta E






  • 75 (H e M)

    48% de 75 = 36M

    75 - 36 = 39H


    3/7 -- H

    4/7 -- 36 

    4/7H = 36 x 3/7

    4H = 36 x 3

    H = 9 x 3

    H = 27


    39H - 27H = 12H

  • Muito obrigada, Paulo Roberto achei seu comentário ótimo, mais fácil de aprender.

  • O enunciado ficou um pouco confuso ou me falta QI para melhor raciocinar. 
    Alguém além de mim pensou que o seminário teria sido dividido em duas turmas, uma pela manhã e outra à tarde? rs

  • Aqui, o total de funcionários é 75, e o percentual de mulheres no período da manhã era 48%. Portanto, a quantidade de mulheres (quantia de interesse) pode ser calculada lembrando que:

    Se haviam 36 mulheres no total de 75 funcionários, o restante eram homens:

    75 – 36 = 39 homens

    Assim, pela manhã haviam 39 homens presentes, que representavam 52% (100% - 48%) do total de funcionários.

    Com a saída de H homens à tarde, os homens passaram a ser 3/7 do total. Os homens que restaram eram 39 – H, e as mulheres que restaram eram 36. Assim:

    Portanto, o número de homens que se ausentaram no período da tarde é H = 12.

    Resposta: E

  • Mulheres: 75 x 0,48 = 36

    Homens: 75 - 36 = 39

    Manhã: 36 + 39

    Tarde: 36 + (39 - H) ------> Total de participantes na ocasião.

    A quantidade destes (39 - H) passou a ser igual a 3/7 do total de participantes na ocasião. Então temos:

    (39 - H) = [36 + (39 + H)] x 3/7

    7(39 - H) = 3[36 + (39 + H)]

    273 - 7H = 3[75 +H]

    7H - 3H = 273 - 225

    4H = 48

    H = 48/4

    H = 12