- ID
- 572626
- Banca
- Marinha
- Órgão
- ESCOLA NAVAL
- Ano
- 2009
- Provas
- Disciplina
- Matemática
- Assuntos
Considere a função real ƒ de variável real e as seguintes proposições:
I) Se ƒ é contínua em um intervalo aberto contendo X = X0 e tem um máximo local em x =x0 então ƒ'( X0 )= 0 e ƒ'' ( X0 )< 0·
II) Se ƒ é derivável em um intervalo aberto contendo X = X0 e ƒ' (X0) = 0 então ƒ tem um máximo ou um mínimo local em X = X0.
III) Se ƒ tem derivada estritamente positiva em todo o seu domínio então ƒ é crescente em todo o seu domínio .
IV) Se lim ƒ(x)= 1 e lim g(x) é infinito então lim ( ƒ(x))g(x) = 1.
x→a x→a x→a
V) Se f é derivável ∀ x ∈ ℜ , então lim ƒ(x) - ƒ (x - 2s) = 2ƒ'(x) .
s→0 2s
Podemos afirmar que