SóProvas


ID
67552
Banca
ESAF
Órgão
Receita Federal
Ano
2009
Provas
Disciplina
Raciocínio Lógico
Assuntos

O número de petroleiros que chegam a uma refinaria ocorre segundo uma distribuição de Poisson, com média de dois petroleiros por dia. Desse modo, a probabilidade de a refinaria receber no máximo três petroleiros em dois dias é igual a:

Alternativas
Comentários
  • Josiane

    O ponto dos concursos tem essa prova resolvida. Não consegui copiae e colar pois o pdf está protegido. Se vc quiser me mande um email que eu mando de volta com o atachado.

    OK?

    abs, Gino

    donatogino@gmail.com
  • Resolvi essa questão usando a seguinte fórmula que achei no wikipédia (http://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_de_Poisson):



    λ = 2; t= 2

    Como e^(-λt)=e^(-4) é uma constante, vou chama-la de Q - fica mais fácil de digitar. Lembrando que 0!=1. Também temos que λt =4

    Como ele quer até 3 petroleiros, temos P(0) + P(1) + P(2) + P(3) = [(Q*4^0)/ 0!] + [(Q*4^1)/ 1!] + [(Q*4^2)/ 2!] + [(Q*4^3)/ 3!] = Q + 4Q + 8Q + (64Q/6) 
    =142Q/6 = 71Q/3 = [71e^(-4)] / 3

    Espero ter ajudado

    Marcelo
  • Distribuição de Poisson:
    Usa-se para calcular o número de sucessos ocorridos em um intervalo de tempo ou espaço.
    Geralmente a questão fornece: a média (M’) de ocorrência de sucessos em um certo intervalo(não necessariamente o intervalo pedido na questão); o intervalo (N), que deve ser considerado para o cálculo, e o número de sucessos (S) procurados.

    Dados da questão:
    M’=2 petroleiros por dia
    N= 2 dias
    Neste caso a média de ocorrência dada é de 2 petroleiros por dia, porém a questão pede que seja calculada a probabilidade para 2 dias e não 1, portanto, multiplicaremos a média de ocorrência dada (que é diária) por 2 dias, na equação usaremos a média como 4 petroleiros a cada 2 dias.
    M = 2xM’= 2(2)=4 petroleiros a cada 2 dias

    A questão pede a probabilidade de a refinaria receber ATÉ 3 petroleiros, ou seja, ela quer a probabilidade de receber 0 petroleiros + a probabilidade de receber 1 petroleiro + a probabilidade receber 2 petroleiros + a probabilidade de receber 3 petroleiros. Calcularemos a probabilidade para os sucessos 0, 1, 2 e 3 petroleiros e somaremos estes valores.
    S= 0, 1, 2 e 3 

    EQUAÇÃO:

    P(S)=[(M^S)(e^-M)]/S! 
                             

    OBS:(M^S= M
    elevado aS)
            (e^-M = e
    elevado a –M)
    P(S)é a probabilidade de ocorrer o sucesso S
    S é o número de sucessos que se deseja
    M é a média de sucessos para o intervalo pedido pela questão
    e=2,71828...

    CÁLCULOS:
    PARA S=0
    P(0)=
    [(4^0)(e^-4)]/0! = e^-4

    PARA S=1
    P(1)=
    [4(e^-4)]/1!= 4e^-4

    PARA S=2
    P(2
    )=[(4^2)(e^-4)]/2!=8e^-4

    PARA S=3
    P(3)
    =[(4^3)(e^-4)]/3!= [32(e^-4)]/3

    P TOTAL= e^-4
    + 4e^-4 + 8e^-4 + [32(e^-4)]/3=  [71( e^-4)]/3

  • Com base nos cálculos dos colegas acima torna-se verdadeira a alternativa:

    Gabarito: "C"

  • Aplicando a fórmula de Poisson, temos:

    Resposta: C

  • https://sabermatematica.com.br/provaauditorrfb.html

  • questao dessa e pular e partir pra proxima

  • questão do capeta, que Deus me abençoe na hora da prova, amém!