SóProvas


ID
1297048
Banca
CESPE / CEBRASPE
Órgão
INPI
Ano
2013
Provas
Disciplina
Matemática
Assuntos

Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.

Se, com determinada vazão, são necessárias 3 horas para encher completamente um reservatório com volume de 60 m3 , então, ao reduzir-se em 10% essa vazão e substituir- se o reservatório por um novo, com volume 50% maior que o antigo, então o tempo para encher esse novo reservatório aumentará em aproximadamente 67%.

Alternativas
Comentários
  • CERTO

    Montando a tabela

     

     

     Vazão                Tempo      Volume

         X                        3 h           60 m3

     X + (X . 10%)          Y            60 + (60. 50%)

     

    Para o valor de posso escolher qualquer valor, para facilitar a conta vou colar X = 100;

     

     Vazão                Tempo        Volume

     100                       3 h               60 m3

       90                         Y               90 m3

     

    Agora é só montar a equação;

    Y = (3 . 100 . 90) / (90 . 60)

     

     

    Y = 5 horas será o tempo necessário para encher o reservatório, vamos calcular qual foi o aumento, no caso 2 horas.

    3 h = 100%

    2 h =  X%

    Multiplicando em cruz;

    3x = 2 . 100

    x = 200 / 3

    X = 66,66667%

    Logo esta próximo de 67%

     

     

  • Muito legal o comentário do Leonardo, mas eu vou mostrar outra forma de pensar para resolver a questão.

     

     Bom, temos um tonel com 60 m³, se vcs lembram temos a relação que 1m³ = 1000, ou seja, o tonel tem 60.000 litros.

     Que para encher gasta 3 horas (180 minutos). Ou seja, a cada minuto enche 333,3 litros. 

     Se a vazão ficou 10% menor, então 333,3 – 10 % = 300 litros por minuto a nova vazão.

    Mas o tonel ficou 50% maior, 60000 + 50% = 90000 litros.

    Agora ao dividir o novo tonel, pela nova vazão, sabemos que foi gasto 300 minutos, para encher.

     

    Faz um regra de três simples se quiser saber a porcentagem do tempo que aumentou, e ai temos um aumento de 66,6 % = aproximadamente 67%  Questão certa!

  • 100 ------3h-------60m³

    90 --------x---------90m³

    lembrando que a grandeza hora com a grandeza vasão são inversamente proporcionais, pois ao diminuir a vasão vai aumentar a hora para encher o reservatorio. 

    se em 3h vc enche 60m³ então demorará mais horas para encher 90m³. aqui é GDP.

    logo, 3/x = 90/100 x 60/90, cortando os zeros  e simplificando fica:

    3/x =  3/5, aqui multiplica cruzado.

    x = 15/3 = 5h, ou seja, duas joras a mais.

    3h-----100%

    2h-------x  regra de 3aqui.

    3x  = 200

    x= 200/3 aproximadamente 67%.

     

  • Gabarito: CERTO


    A maneira mais fácil de se resolver é dada no próprio enunciado: "Sabendo que a vazão (Q) do cano é definida como sendo o volume (V) de água que sai do cano por segundo (T), julgue os itens seguintes."


    Q = Volume/Tempo

    Volume = 60 m³ e Tempo = 3 horas

    Q1 = 60/3 = 20 m³/hora.


    Reduzindo em 10% a Q1, teremos Q2 = 18 m³/hora

    Aumentando em 50% o Volume 1, teremos V2 = 60+30 = 90 m³


    Aplicado novamente na fórmula:


    Q2 = Volume2/Tempo

    Tempo = 90/18 = 5 horas (aumento de 2 horas).


    Regra de 3:


    3horas - 100%

    2 horas - x


    x = 200/3 = 66,666%

    Aproximadamente 67%.


  • Para encher o tanque de 60m em 3 horas é preciso uma vazão de 60/3 = 20m por hora. Reduzindo-se essa vazão em 10%, chegamos a 20 x 0,9 = 18m por hora. Aumentando o volume do reservatório em 50%, chegamos a 1,5 x 60 = 90m.

       O tempo para encher o reservatório de 90m com vazão de 18m por hora é:

    18m ---------------- 1 hora

    90m ---------------- X

    X =5 horas

       O tempo de enchimento aumentou em 2 horas. Em relação ao tempo inicial de 3 horas, este aumento é de 2/3 = 0,67 = 67%.

    Item CORRETO.

  • O jeito mais didático que achei para fazer essa questão é fazendo uma regra de três composta, separando o que faz parte do processo ( VAZÃO E HORAS), e o produto formado (RESERVATORIO), ficando desta forma:

    Obs: vc poder dar o valor para vazão para efeito de calculo e depois notar o aumento ou decréscimo que a questão pede!!

    100 ------3h-------60m³

    90 --------x---------90m³

    Sempre quando dispuser desta forma, multiplique em linha e depois cruzado e achará que X = 5H

    5H/3H -> Aumento de 66%, aproximadamente 67% como a questão informa.

  • Faz uma regra de três composta:

    Vamos analisar se as variáveis são inversamente ou diretamente proporcionais

    Com um volume de 60 eu encho em 3h.

    Com um volume de 90 eu encho em mais horas - diretamente.

    Com um vazão de 1 eu encho em 3h

    Com uma vazão de 0,9 eu encho em menos horas. - inversamente.

    3/x = 6/9 x 0,9/1

    x= 5/3 = 67%