Uma caixa de água tem o formato de um cilindro circular reto, altura de 5 m e raio da base igual a 2 m. Se a água em seu interior ocupa 30% de seu volume, o número de litros de água que faltam para enchê-lo é
Uma caixa de água tem o formato de um cilindro circular reto, altura de 5 m e raio da base igual a 2 m. Se a água em seu interior ocupa 30% de seu volume, o número de litros de água que faltam para enchê-lo é
Para construir uma manilha de esgoto, um cilindro com 2 m de diâmetro e 4 m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 20 cm de espessura.
Supondo que cada metro cúbico de concreto custe R$ 10,00 e tomando 3,1 como valor aproximado de π então o preço dessa manilha é igual a
Considerando um cilindro de revolução circunscrito a um prisma triangular de 12cm de altura, sendo a base do prisma um triângulo isósceles cujo ângulo do vértice mede 30º e sendo 5cm a medida da base do triângulo, o volume desse cilindro é igual a:
Uma indústria deseja fabricar um tambor fechado na forma de um cilindro circular reto. Se a área total da superfície do tambor é fixada em 36π dm2 , o volume máximo que esse tambor pode ter é, em dm3 , igual a
A superfície lateral planificada de um cilindro de volume v é um retângulo de lados a e b. Um outro cilindro, de volume V, tem como superfície lateral planificada um retângulo de base 2a e altura 2b. Se as alturas dos dois cilindros são, respectivamente, b e 2b, tem-se que
Uma chapa quadrada de 4 m de lado é utilizada para formar a parede de um reservatório cilíndrico. O volume do reservatório é igual a
Seja L uma lata de forma cilíndrica, sem tampa, de raio da base r e altura h. Se a área da superfície de L mede 54π a2cm2, qual deve ser o valor de √ r2 + h2 , para que L tenha volume máximo?
Três cilindros circulares retos e iguais têm raio da base R, são tangentes entre si dois a dois e estão apoiados verticalmente sobre um plano. Se os cilindros têm altura H, então o volume do sólido compreendido entre os cilindros vale
No ensino de geometria, nas séries iniciais, tem sua importância social o reconhecimento do universo tridimensional. Pensando nisso, uma professora levou para uma de suas aulas os objetos abaixo:
I. Uma caixa de sapato (paralelepípedo).
II. Uma lata de leite em pó (cilindro).
III. Uma bola de futebol (esfera).
Os sólidos acima são, respectivamente:
Uma torta de chocolate foi dividida em 12 fatias iguais, das quais foram consumidas 4 fatias. Sendo a torta um cilindro reto de 30 cm de diâmetro e 6 cm de altura, qual é, em cm3 , o volume correspondente às fatias que sobraram?
Uma torta de chocolate foi dividida em 12 fatias iguais, das quais foram consumidas 4 fatias. Sendo a torta um cilindro reto de 30 cm de diâmetro e 6 cm de altura, qual é, em cm³ , o volume correspondente às fatias que sobraram?
A uma caixa d’água de forma cúbica com 1 metro de lado, está acoplado um cano cilíndrico com 4cm de diâmetro e 50m de comprimento. Num certo instante, a caixa está cheia de água e o cano vazio. Solta-se a água pelo cano até que fique cheio. Qual é o valor aproximado da altura, em cm, da água na caixa no instante em que o cano ficou cheio?
Numa caixa de isopor, na forma de paralelepípedo retângulo com dimensões internas de 60 cm de largura, 80 cm de comprimento e 12 cm de altura, podem ser colocadas 48 latas completamente cheias de refrigerante, cada uma na forma de cilindro circular reto, com altura de 12 cm e raio da base de 5 cm.
Todo o líquido contido nas latas foi despejado no interior da caixa de isopor, deixando-a parcialmente cheia. Desprezando o volume do material utilizado na fabricação das latas, a altura atingida pelo líquido no interior da caixa é, em centímetros,
Uma torta de chocolate foi dividida em 12 fatias iguais, das quais foram consumidas 4 fatias. Sendo a torta um cilindro reto de 30 cm de diâmetro e 6 cm de altura, qual é, em cm3 , o volume correspondente às fatias que sobraram?
Um cilindro circular reto contém em seu interior um cone circular reto cuja medida do raio da base é a metade da medida do raio da base do cilindro. Se o cone e o cilindro têm a mesma altura então a razão entre o volume do cilindro e o volume do cone é
A caixa d’água de um hospital tem a forma de um cilindro circular
reto com 10 metros de altura e capacidade para 30.000 litros de
água. Considere que essa caixa d’água, completamente vazia, foi
enchida à vazão constante e, 100 minutos depois de iniciado o
enchimento, a água atingiu a altura de 3 metros. Com base nessas
informações e supondo que nenhuma torneira abastecida pela caixa
seja aberta durante o processo de enchimento, julgue os itens a
seguir.
Quando a água no interior da caixa atingiu 3 metros de altura, mais de 10.000 litros de água haviam sido despejados na caixa.
A caixa d’água de um hospital tem a forma de um cilindro circular
reto com 10 metros de altura e capacidade para 30.000 litros de
água. Considere que essa caixa d’água, completamente vazia, foi
enchida à vazão constante e, 100 minutos depois de iniciado o
enchimento, a água atingiu a altura de 3 metros. Com base nessas
informações e supondo que nenhuma torneira abastecida pela caixa
seja aberta durante o processo de enchimento, julgue os itens a
seguir.
Para que a caixa fique completamente cheia, serão necessárias mais de 5 horas.
Um reservatório de água com a forma de um cilindro reto de 1,5 m de altura e 1,2 m de raio interno precisa ser impermeabilizado. Para tal, seu fundo (uma das bases do cilindro) e sua superfície lateral interna serão totalmente cobertos por um produto impermeabilizante que é vendido em embalagens com um litro.
Se o rendimento desse produto é de 9 m2 por litro, quantas embalagens, no mínimo, devem ser compradas para que essa impermeabilização seja realizada?
Uma indústria deseja fabricar uma caixa de lápis na forma de um cilindro reto de diâmetro medindo 10 centímetros e altura medindo 20 centímetros. O material usado para a tampa e a base custa R$ 5,00 por centímetro quadrado, e o material a ser usado na parte lateral custa R$ 3,00 por centímetro quadrado. O custo total do material para fabricar esta caixa de lápis será de __________ reais.
Um cilindro circular reto possui altura igual ao raio de sua base. Se a razão entre o volume do cilindro, dado em metros cúbicos, e a sua área total, dada em metros quadrados, é igual a 2 metros, então a área lateral do cilindro, em m2 , é igual a
É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo, para atrair beija-flores. Mas é importante saber que, na hora de fazer a mistura, você deve sempre usar uma parte de açúcar para cinco partes de água. Além disso, em dias quentes, precisa trocar a água de duas a três vezes, pois com o calor ela pode fermentar e, se for ingerida pela ave, pode deixá- la doente. O excesso de açúcar, ao cristalizar, também pode manter o bico da ave fechado, impedindo-a de se alimentar. Isso pode até matá-la.
Ciência Hoje das Criança s. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar. 1996.
Pretende-se encher completamente um copo com a mistura para atrair beija-flores. O copo tem formato cilíndrico, e suas medidas são 10 cm de altura e 4 cm de diâmetro. A quantidade de água que deve ser utilizada na mistura é cerca de (utilize π = 3)
Considere que um posto de combustíveis possua um reservatório de gasolina com espaço interno em forma de um cilindro circular reto de comprimento igual a 5 m e de raio da base medindo 2 m. Se, imediatamente antes de ser praticado o reajuste da gasolina do dia 16/3/2002, quando o preço do litro desse combustível era de R$ 1,40, esse reservatório se encontrasse cheio, então o montante que o posto poderia arrecadar com a venda de todo o combustível desse reservatório pelo novo preço seria superior a R$ 90.000,00.
Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.
Se o reservatório encontra-se vazio e o cano tem uma vazão de 40 dm3 por segundo, então serão necessários 30 minutos para que o tanque fique cheio.
Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.
Se, em um cano com 10 cm de raio, a vazão é de 50.000 cm3 por segundo e aumenta em 10% para cada centímetro a mais no raio do cano, então, para encher o reservatório em 1.000 segundos, o cano precisará ter 12 cm de raio.
Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.
Se, com determinada vazão, são necessárias 3 horas para encher completamente um reservatório com volume de 60 m3 , então, ao reduzir-se em 10% essa vazão e substituir- se o reservatório por um novo, com volume 50% maior que o antigo, então o tempo para encher esse novo reservatório aumentará em aproximadamente 67%.
Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.
Se o custo para encher esse reservatório de 60.000 dm3 for de R$ 0,03 por segundo, então a utilização de uma vazão de 40.000 mL por segundo será 25% mais econômico que a utilização de uma vazão de 0,0125 m3 por segundo.
Maria encheu um copo cilíndrico,cujo raio da base mede 3 cm, e a altura mede 12 cm, com água até 2/3 de sua capacidade. Depois, sem que houvesse desperdício, transferiu toda a água para outro copo, também cilíndrico e inicialmente vazio, de 4 cm de raio da base. Qual foi, em cm, a altura atingida pela água no segundo copo :
Dobrando-se a altura de um cilindro circular reto e triplicando o raio de sua base, pode-se afirmar que seu volume fica multiplicado por:
Maria encheu um copo cilíndrico,cujo raio da base mede 3 cm,e a altura mede 12 cm, com água até 2/3 de sua capacidade. Depois,sem que houvesse desperdício,transferiu toda a água para outro copo, também cilíndrico e inicialmente vazio, de 4 cm de raio da base. Qual foi, em cm,a altura atingida pela água no segundo copo?
Supondo as dimensões internas de cada pino plástico utilizado na embalagem de cocaína como sendo um cilindro de raio 0,5 cm e altura 4 cm, o valor do volume total de cocaína, desse pino plástico, completamente cheio, em cm³, será de:
(Adote o valor aproximado de π = 3 ) )
Em uma usina, um tanque A, com a forma de um cilindro reto, cujas medidas do raio da base e da altura são iguais a 2 m e 3,75 m, respectivamente, está completamente cheio com etanol. Todo o seu conteúdo será transferido para o tanque B através de uma válvula cuja vazão, constante, é de 0,12 m3 por minuto. Nessas condições, e usando π = 3, pode-se afirmar que o tempo necessário para esvaziar completamente o tanque A é, aproximadamente,
Vc = π . r2 . h
Uma máquina de processar o açaí tem forma cilíndrica, com 24 cm de diâmetro. Para limpar essa máquina, seu proprietário utiliza 7,2 litros de água, atingindo, assim, um terço de sua capacidade. A altura dessa máquina é, aproximadamente, igual a :
Dados um cilindro circular reto e um cone circular reto de mesma altura e mesmo raio, é correto afirmar que o volume do cone é igual a:
Uma garrafa de refrigerante é formada por um cilindro circular reto e por um tronco de cone circular. Os dois sólidos têm bases congruentes, e a base maior do tronco de cone coincide com uma das bases do cilindro. As dimensões internas da garrafa são tais que as bases circulares do cilindro citado têm raios que medem 5 cm, e a distância entre essas bases é de 10 cm. O refrigerante é acondicionado na garrafa até que se tenha um raio de 1 cm no círculo correspondente à superfície do líquido, quando a garrafa é colocada em posição tal que a base menor do tronco de cone fique na parte superior da garrafa, paralela à superfície da Terra. Nessa posição, a altura total do sólido correspondente à forma tomada pelo refrigerante é de 14 cm.
Em relação a essa garrafa e ao refrigerante nela armazenado, julgue os itens a seguir, assinalando (V) para os verdadeiros e (F) para os falsos.
A altura da parte do tronco de cone de bases paralelas tomada pelo refrigerante é 8 cm.
Uma garrafa de refrigerante é formada por um cilindro circular reto e por um tronco de cone circular. Os dois sólidos têm bases congruentes, e a base maior do tronco de cone coincide com uma das bases do cilindro. As dimensões internas da garrafa são tais que as bases circulares do cilindro citado têm raios que medem 5 cm, e a distância entre essas bases é de 10 cm. O refrigerante é acondicionado na garrafa até que se tenha um raio de 1 cm no círculo correspondente à superfície do líquido, quando a garrafa é colocada em posição tal que a base menor do tronco de cone fique na parte superior da garrafa, paralela à superfície da Terra. Nessa posição, a altura total do sólido correspondente à forma tomada pelo refrigerante é de 14 cm.
Em relação a essa garrafa e ao refrigerante nela armazenado, julgue os itens a seguir, assinalando (V) para os verdadeiros e (F) para os falsos.
O cone correspondente ao tronco de cone que forma a garrafa tem altura de 5 cm.
Uma garrafa de refrigerante é formada por um cilindro circular reto e por um tronco de cone circular. Os dois sólidos têm bases congruentes, e a base maior do tronco de cone coincide com uma das bases do cilindro. As dimensões internas da garrafa são tais que as bases circulares do cilindro citado têm raios que medem 5 cm, e a distância entre essas bases é de 10 cm. O refrigerante é acondicionado na garrafa até que se tenha um raio de 1 cm no círculo correspondente à superfície do líquido, quando a garrafa é colocada em posição tal que a base menor do tronco de cone fique na parte superior da garrafa, paralela à superfície da Terra. Nessa posição, a altura total do sólido correspondente à forma tomada pelo refrigerante é de 14 cm.
Em relação a essa garrafa e ao refrigerante nela armazenado, julgue os itens a seguir, assinalando (V) para os verdadeiros e (F) para os falsos.
Com a garrafa na posição citada acima, a superfície do refrigerante tem área menor que 3 cm2.
Uma garrafa de refrigerante é formada por um cilindro circular reto e por um tronco de cone circular. Os dois sólidos têm bases congruentes, e a base maior do tronco de cone coincide com uma das bases do cilindro. As dimensões internas da garrafa são tais que as bases circulares do cilindro citado têm raios que medem 5 cm, e a distância entre essas bases é de 10 cm. O refrigerante é acondicionado na garrafa até que se tenha um raio de 1 cm no círculo correspondente à superfície do líquido, quando a garrafa é colocada em posição tal que a base menor do tronco de cone fique na parte superior da garrafa, paralela à superfície da Terra. Nessa posição, a altura total do sólido correspondente à forma tomada pelo refrigerante é de 14 cm.
Em relação a essa garrafa e ao refrigerante nela armazenado, julgue os itens a seguir, assinalando (V) para os verdadeiros e (F) para os falsos.
Quando o conteúdo da garrafa é suficiente apenas para encher a parte correspondente ao cilindro circular reto, seu volume é maior que três quartos de um litro.
Uma garrafa de refrigerante é formada por um cilindro circular reto e por um tronco de cone circular. Os dois sólidos têm bases congruentes, e a base maior do tronco de cone coincide com uma das bases do cilindro. As dimensões internas da garrafa são tais que as bases circulares do cilindro citado têm raios que medem 5 cm, e a distância entre essas bases é de 10 cm. O refrigerante é acondicionado na garrafa até que se tenha um raio de 1 cm no círculo correspondente à superfície do líquido, quando a garrafa é colocada em posição tal que a base menor do tronco de cone fique na parte superior da garrafa, paralela à superfície da Terra. Nessa posição, a altura total do sólido correspondente à forma tomada pelo refrigerante é de 14 cm.
Em relação a essa garrafa e ao refrigerante nela armazenado, julgue os itens a seguir, assinalando (V) para os verdadeiros e (F) para os falsos.
O volume do refrigerante acondicionado na garrafa é maior que 850 mL.
Uma jarra cilíndrica, com 7cm de raio e 25cm de altura, está com suco até uma altura de 8cm. Por brincadeira, Érica jogou algumas bolinhas de gude dentro da jarra até o suco chegar à borda da jarra, sem derramar o líquido. Dessa forma, assinale a alternativa que apresenta o volume das bolinhas de gude que foram jogadas dentro da jarra.
Considere um cilindro circular reto. Se o raio da base for reduzido pela metade e a altura for duplicada, o volume do cilindro
Um barbante ficou completamente enrolado em uma lata cilíndrica de refrigerante com exatamente cinco voltas e completamente enrolado em uma lata cilíndrica de doce com apenas duas voltas. Tendo em vista esses dados, verifica-se que a razão entre os raios da primeira lata com a segunda é de:
Para confeccionar os brigadeiros e os doces de coco para a festa de seu filho, Maria preparou uma lata de brigadeiro - cilíndrica, com medidas internas iguais a 12 cm de diâmetro e 10 cm de altura - e uma lata de docinho de coco - cilíndrica, com medidas internas iguais a 8 cm de diâmetro e 10 cm de altura. Considerando que os brigadeiros e os docinhos de coco tenham sido enrolados sob a forma de uma pequena esfera de 1 cm de raio, julgue o item a seguir.
Maria preparou ingredientes suficientes para enrolar mais de 250 brigadeiros.
Para confeccionar os brigadeiros e os doces de coco para a festa de seu filho, Maria preparou uma lata de brigadeiro - cilíndrica, com medidas internas iguais a 12 cm de diâmetro e 10 cm de altura - e uma lata de docinho de coco - cilíndrica, com medidas internas iguais a 8 cm de diâmetro e 10 cm de altura. Considerando que os brigadeiros e os docinhos de coco tenham sido enrolados sob a forma de uma pequena esfera de 1 cm de raio, julgue o item a seguir.
A área lateral externa da lata de docinho de coco é inferior a 70π cm2 .
Um copo tem a forma de um cilindro reto com raio da base medindo 4 cm e altura 20 cm. O copo está preenchido completamente com água. O copo é inclinado até que o plano da sua base forme um ângulo de 45° com a horizontal e, assim, certa quantidade de água derramará do copo. Qual o volume de água que restará no copo? Desconsidere a espessura da superfície do copo.
Sabe-se que a base circular de um tanque cilíndrico possui raio igual a 3 metros. Esse tanque foi colocado dentro de um tanque esférico, cujo raio é igual a 5 metros.
O volume máximo, em metros cúbicos, que o tanque cilíndrico pode ter é
Um cilindro circular reto possui altura igual ao raio de sua base. Se a razão entre o volume do cilindro, dado em metros cúbicos, e a sua área total, dada em metros quadrados, é igual a 2 metros, então a área lateral do cilindro, em m² , é igual a
Um tonel cilíndrico de 80 cm de diâmetro e 90 cm de altura contém óleo até a metade de sua capacidade. Na parte inferior do tonel, há uma torneira, inicialmente fechada, cuja vazão é de 6 L por minuto.
Considerando π = 3,1, se essa torneira for aberta, o tonel esvaziará completamente em
Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.
Se, em um cano com 10 cm de raio, a vazão é de 50.000 cm3 por segundo e aumenta em 10% para cada centímetro a mais no raio do cano, então, para encher o reservatório em 1.000 segundos, o cano precisará ter 12 cm de raio.
Considere um reservatório de formato cilíndrico com volume de 60 m3 que esteja conectado a um cano para enchê-lo. Sabendo que a vazão do cano é definida como sendo o volume de água que sai do cano por segundo, julgue os itens seguintes.
Se, com determinada vazão, são necessárias 3 horas para encher completamente um reservatório com volume de 60 m3 , então, ao reduzir-se em 10% essa vazão e substituir- se o reservatório por um novo, com volume 50% maior que o antigo, então o tempo para encher esse novo reservatório aumentará em aproximadamente 67%.
A equipe de projetistas de uma montadora, após receber ordem para projetar um tanque de combustível com capacidade de 71 litros, criou cinco versões, listadas a seguir.As medidas internas dos recipientes são inteiras e foram apresentadas apenas algumas dessas medidas:
Em uma usina, um tanque A, com a forma de um cilindro reto, cujas medidas do raio da base e da altura são iguais a 2 m e 3,75 m, respectivamente, está completamente cheio com etanol. Todo o seu conteúdo será transferido para o tanque B através de uma válvula cuja vazão, constante, é de 0,12 m3 por minuto. Nessas condições, e usando π = 3, pode-se afirmar que o tempo necessário para esvaziar completamente o tanque A é, aproximadamente,
Dado: Vc = π . r2 . h
Uma empresa farmacêutica produz medicamentos em pílulas, cada uma na forma de um cilindro com uma semiesfera com o mesmo raio do cilindro em cada uma de suas extremidades. Essas pílulas são moldadas por uma máquina programada para que os cilindros tenham sempre 10 mm de comprimento, adequando o raio de acordo com o volume desejado.
Um medicamento é produzido em pílulas com 5 mm de raio. Para facilitar a deglutição, deseja-se produzir esse medicamento diminuindo o raio para 4 mm, e, por consequência, seu volume. Isso exige a reprogramação da máquina que produz essas pílulas.
Use 3 como valor aproximado para π.
A redução do volume da pílula, em milímetros cúbicos, após a reprogramação da máquina, será igual a
Qual o volume de um cilindro reto, Considerando π = 3,14, o qual mede 6 cm de altura e seu raio é de 3 cm?
No projeto integrador, um grupo fez modelos de embalagens para os produtos desenvolvidos pelas fases superiores no curso de vestuário. As caixas são de formato esférico para armazenamento de camisolas, que são dobradas em formato cilíndrico com altura de 6 cm e raio de 2 cm. A caixa foi elaborada para que um cilindro fique inscrito em cada esfera.
Analise as afirmações I, II e III.
I. Considerando que o volume da roupa coincide com o volume total de um cilindro com essas medidas, o volume da embalagem não aproveitado é de 4 π ( 13√13 / 3 -6) cm3 .
II. O raio da esfera é de 2√13 cm .
III. Se o cilindro tem sua lateral envolvida por papel seda, são necessários, no mínimo, 24πcm2 por cilindro.
Sobre a veracidade das afirmações, assinale a alternativa CORRETA.
Um prédio de apartamentos residenciais decidiu trocar sua caixa de água para que pudesse garantir melhor o abastecimento. Para isso, instalou uma caixa cilíndrica com raio de 9m e altura de 10m. Estando cheia, é correto afirmar que a quantidade de litros de água que a caixa poderá oferecer é de
(Dados: considere π = 3 ).
Uma caixa de água tem a forma de um cilindro, cuja base interna tem 1,2 m de diâmetro e a altura interna mede 70 cm. É correto afirmar que a capacidade dessa caixa é
Uma jarra cilíndrica está completamente cheia de água. Seu diâmetro interno é 2d, e sua altura, 3H. A água contida nessa jarra é suficiente para encher completamente n copos cilíndricos de diâmetro interno d e altura H.
O maior valor de n é
O projeto inicial de uma piscina em forma cilíndrica previa profundidade de 1,5 metro. Entretanto, antes de iniciar sua construção, o engenheiro resolveu ampliar seu diâmetro em 20% e sua profundidade em 15 cm. Dessa forma, após a mudança no projeto, a capacidade volumétrica da piscina será aumentada em
Um cilindro circular reto, com raio da base e altura iguais a R, tem a mesma área de superfície total que uma esfera de raio
Para a casa que está construindo, Julio comprou uma cisterna (reservatório de água) pré-fabricada com a forma de um cilindro com 2m de diâmetro e 1,6m de altura.
A capacidade dessa cisterna é de, aproximadamente:
Os especialistas alertam que é preciso beber, em média, 2 litros de água por dia. Isso equivale a 10 copos com capacidade de 200 cm3 . Um copo cilíndrico com esta capacidade e 2 cm de raio da base tem, aproximadamente, ______ cm de altura. (Considere π = 3)
Um certo tipo de medicamento é armazenado em tambores cilíndricos, ocupando 1,20 m3 de seu volume. Esse medicamento será distribuído nas farmácias em frascos de 250 mililitros. Então, com o conteúdo de um tambor serão obtidos
Numa cozinha há dois recipientes cilíndricos de mesma altura medindo 50 cm, ambos vazios. Os raios de suas bases são iguais a 5 cm e 10 cm. A cozinheira despeja um líquido no cilindro mais fino e observa que atinge uma altura de 40 cm. Ao trocar esse conteúdo para o cilindro mais largo, o líquido ocupará, nesse recipiente,
Dado: Volume do cilindro = π . r2 . h
Em uma cidade, o reservatório de água com oito metros de altura foi construído em forma de um cilindro circular reto e tem capacidade para 100 mil litros de água. Preocupada com o racionamento de água, a prefeitura dessa cidade deseja construir outro reservatório, com a mesma altura do anterior, porém, com o dobro da capacidade. Nessas condições, a área da base do novo reservatório, em m2 , deve ser igual a
Para se construir um reservatório de água, em chapas metálicas, foram sugeridas duas alternativas.
A primeira seria construir esse reservatório no formato de um cilindro reto de base circular, com as dimensões de 5 metros de altura e 6 metros de diâmetro. A segunda alternativa seria construir esse reservatório no formato de um prisma reto, com base quadrada de 4 metros de lado e com 8 metros de altura. Para essas duas alternativas, considerando π = 3 e também que os reservatórios teriam tampa superior, a capacidade de armazenamento de água e a quantidade necessária de chapas para construção de cada um dos reservatórios seriam, respectivamente:
Um laboratório utiliza mensalmente 628ml de um produto. O produto é armazenado em latas cilíndricas de 20cm de diâmetro e 30cm de altura. O número de meses necessário para o consumo total de uma lata do produto é
Dado: π = 3,14
Uma caixa d’água na forma de um cilindro está totalmente cheia, devido um longo tempo de seca 3000 litros de água foram consumidos. Quanto baixou aproximadamente o nível da água sabendo que a caixa tinha as seguintes dimensões: 12m de altura e 10m de diâmetro da base.
Um recipiente com o formato de um cilindro reto de altura h cm e raio r cm está completamente cheio de água. Parte da água desse recipiente foi transferida para dois recipientes, iguais entre si e em forma de cone, que têm a mesma altura do recipiente e o raio da base igual à metade do raio do cilindro. Considere também que os dois recipientes com o formato de cone ficaram completamente cheios de água. Supondo desprezível a espessura do material de que são feitos todos os recipientes, determine quantos outros recipientes, também em forma de cone, mas com a altura igual à metade da altura do cilindro e de mesmo raio do cilindro, podem ser totalmente preenchidos com a água que restou no cilindro.
Observação: Na transferência de água para os recipientes não há perda de água.
A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número de átomos presentes nessa grafite é
Nota:
1) Assuma que a grafite é um cilindro circular reto, feito de grafita pura. A espessura da grafite é o diâmetro da base do cilindro.
2) Adote os valores aproximados de:
• 2,2 g/cm3 para a densidade da grafita;
• 12 g/mol para a massa molar do carbono;
• 6,0 x 1023 mol-1 para a constante de Avogadro.
Determinada marca de ervilhas vende o produto em embalagens com a forma de cilindros circulares retos. Uma delas tem raio da base 4 cm. A outra, é uma ampliação perfeita da embalagem menor, com raio da base 5 cm. O preço do produto vendido na embalagem menor é de R$ 2,00. A embalagem maior dá um desconto, por mL de ervilha, de 10% em relação ao preço por mL de ervilha da embalagem menor.
Nas condições dadas, o preço do produto na embalagem maior é de, aproximadamente,
Um cilindro reto de altura √6/ 3 cm está inscrito numa pirâmide reta triangular regular e tem sua base em uma das faces da pirâmide. Se as arestas lateral e da base da pirâmide medem 3 cm, o volume do cilindro, em cm3 , é igual a:
Um copo em formato cilíndrico tem 15 cm de altura e 3 cm de raio de base. Sendo assim, qual é a capacidade total desse copo?(Considere π ≅ 3 )
Para resolver o problema de abastecimento de água foi decidida, numa reunião do condomínio, a construção de uma nova cisterna. A cisterna atual tem formato cilíndrico,com 3 m de altura e 2 m de diâmetro, e estimou-se que anova cisterna deverá comportar 81 m3 de água, mantendo o formato cilíndrico e a altura da atual. Após a inauguração da nova cisterna a antiga será desativada. Utilize 3,0 como aproximação para π.
Qual deve ser o aumento, em metros, no raio da cisterna para atingir o volume desejado?
O índice pluviométrico é utilizado para mensurara precipitação da água da chuva, em milímetros, em determinado período de tempo. Seu cálculo é feito de acordo com o nível de água da chuva acumulada em1 m2, ou seja, se o índice for de 10 mm, significa que a altura do nível de água acumulada em um tanque aberto,em formato de um cubo com 1 m2 de área de base, é de 10 mm. Em uma região, após um forte temporal,verificou-se que a quantidade de chuva acumulada em uma lata de formato cilíndrico, com raio 300 mm e altura 1200 mm, era de um terço da sua capacidade.
Utilize 3,0 como aproximação para π
O índice pluviométrico da região, durante o período do
temporal, em milímetros, é de
Kiriku é uma lenda africana de um recém-nascido que sabe falar, andar e correr muito rápido. Kiriku se incumbiu de salvar a sua aldeia de Karabá, uma feiticeira terrível que secou a fonte d'água de sua aldeia. Para que a colheita da aldeia não ficasse prejudicada por falta de água, Kiriku fez um canal desviando a água de um rio. Sabendo que a distância do rio até plantação da aldeia era de 3 km e considerando que o canal tinha a forma de um semicilindro reto de 10 cm de raio, o volume do canal completamente cheio era de:
Calcule o volume do corpo limitado pelos cilindros coordenados por x2 + y2 = a2 e x2 + z2 = a2 e assinale a opção correta.
Um tanque cilíndrico aberto deve ter um revestimento externo lateral com 2,0 cm de espessura. Se o raio interno desse tanque for 6,0 m e a altura for 10,0 m, qual a quantidade de material necessária para o revestimento, em m 3 ?
O volume de um cilindro circular reto de raio r é 1/4 do volume de um bloco retangular com base quadrada de lado 10. Se o cilindro e o bloco retangular têm alturas iguais, conclui-se que a medida de r é
Uma lata de querosene tem a forma de um cilindro circular reto cuja base tem raio R. Colocam-se três moedas sobre a base superior da lata, de modo que estas são tangentes entre si e tangentes à borda da base, não existindo folga. Se as moedas têm raio a e encontram-se presas, então o valor de R em função de a , vale
Admita que a água contida em um tanque na forma de um cilindro circular reto, com 10 m de altura e 5 m de raio, é bombeada, em taxa constante, para outro tanque na forma de um cone circular reto, com 30 m de altura e 5 m de raio e a base voltada para cima. Se inicialmente o tanque cilíndrico está cheio, o cônico está vazio e toda água é bombeada em 10 minutos, qual é a taxa de variação da altura do nível da água no tanque cônico, em m/min, no instante t = 8 minutos?
Um cilindro circular reto, cuja altura é igual ao diâmetro da base, está inscrito numa esfera. A razão entre os volumes da esfera e do cilindro é igual a
Dispõe-se de N tubos cilíndricos, todos iguais entre si, cada qual com diâmetro interno de 4 cm. Se esses tubos transportam a mesma quantidade de água que um único tubo cilíndrico, cujo diâmetro interno mede 12 cm e cujo comprimento é igual ao dobro do comprimento dos primeiros, então:
Um recipiente na forma de um cilindro circular reto contém um líquido até um certo nível. Colocando-se nesse recipiente uma esfera, o nível do líquido aumenta 2 cm. Sabendo-se que o raio do cilindro mede 3√2 , Conclui-se que o raio da esfera, em cm, mede:
A alternativa que corresponde ao volume de um recipiente cilíndrico que mede 70 centímetros de diâmetro e 4,25 metros de altura, considerando π = 3,14 , é:
Sabendo-se que um cilindro de revolução de raio igual a 20 cm, quando cortado por um plano paralelo ao eixo de revolução, a uma distância de 12cm desse eixo, apresenta secção retangular com área igual à área da base do cilindro. 0 volume desse cilindro, em centímetros cúbicos é
Uma caixa d‟água em forma de cilindro possui um volume de 5 m3. Esse valor equivale a quantos litros?
Um copo com capacidade de 200 ml vai ser escrito com seu volume em m³, para uma promoção de aniversário de uma marca. Qual o valor que vai ser inscrito no copo?
Uma caixa cúbica, cuja aresta mede 0,4 metros, está com água até 7/8 de sua altura.
Dos sólidos geométricos abaixo, o que, totalmente imerso
nessa caixa, NÃO provoca transbordamento de água é
Uma vinícola armazena o vinho produzido em um tanque cilíndrico (reto) com sua capacidade máxima ocupada. Esse vinho será distribuído igualmente em barris idênticos também cilíndricos (retos) e vendidos para vários mercados de uma cidade. Sabe-se que cada mercado receberá 2 barris de vinho, com altura igual a 1/5 da altura do tanque e com diâmetro da base igual a 1/4 do diâmetro da base do tanque. Nessas condições, a quantidade x de mercados que receberão os barris (com sua capacidade máxima ocupada) é tal que x pertence ao intervalo
Um cone e um cilindro, ambos equiláteros, têm bases de Rascunho raios congruentes. A razão entre as áreas das secções meridianas do cone e do cilindro é
Um cone e um cilindro, ambos equiláteros, têm bases de raios congruentes. A razão entre as áreas das secções meridianas do cone e do cilindro é
Se a ____________________ de um cilindro for igual à (ao) ____________________, ele é denominado cilindro equilátero.
Um cilindro equilátero cuja geratriz mede 8 cm, tem área lateral igual a ______ π cm2 .