SóProvas


ID
1357126
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2014
Provas
Disciplina
Matemática
Assuntos

Durante um ano, Eduardo efetuou um depósito por mês em sua conta poupança. A cada mês, a partir do segundo, Eduardo aumentou o valor depositado em R$ 15,00, em relação ao mês anterior.

Se o total por ele depositado nos dois últimos meses foi R$ 525,00, quantos reais Eduardo depositou no primeiro mês?

Alternativas
Comentários
  • 1º depósito:  x    2º depósito:  x + 15    11º depósito: x + 10 . 15 (razão) = x + 150

    12º depósito:  x + 165

    Assim,  x + 150 + x + 165 = 525    2x = 525 - 315    x = 210 : 2 = 105    letra b) 

  • x+165= 525-(x+150)

    2x=525-165-150

    2x=210

    x=210/2=105,00R$ alternativa B

  • Não entendi esta resolução..

    De onde veio o 150 e 165?..

  • eu fiz assim...

    15,00*11meses=165,00

    525 a soma dos ultimos 2 depositos;

    logo:

    525,00-15,00= 510/2=255,00 

    165,00-15,00=150,00

    255,00-150,00=105,00 ----------> alternativa b

  • Renato Ferraz Você faz como uma PA (progressão Aritmética):
    O 12º termo -> 
    A12=A1+(n-1)x15(a razão) => A12 = A1 + (11)x15 => A12 = A1 + 165 
    A11=A1+(n-1)x15(a razão) => A11 = A1 + (10)x15 => A11 = A1 + 150
    Logo, a questão diz que A11 + A12 = 525:
    somando A12 + A11 => 2xA1 + (165+150) => 2xA1 + 315 = 525 =>   2xA1=525-315 = > 2xA1 = 210
                     A1 = 210/2 = 105;
    Com o valor de A1 e a razão, você calcula qualquer termo da PA.



  • Primeiro mês: x

    Segundo mês: x + 15

    Décimo primeiro mês: x + 10 (meses anteriores) x 15 (valor a mais do depósito)


    x + 10 x 15 = x + 150 (Décimo primeiro mês)


    Décimo segundo mês: x + 150 + 15

    x + 150 + 15 = x + 165


    Décimo primeiro mês + décimo segundo mês = total desses dois últimos meses = x + 150 + x + 165 = 525


    x + 150 + x + 165 = 525

    2x + 315 = 525

    2x = 525 + 315

    2x = 210

    x = 105

  • Eu fiz assim: 

    Acréscimo do mês 11 = 15,00 x 10 meses = 150,00

    Acréscimo do mês 12 = 15,00 x 11 meses = 165,00

    Total de acréscimos das duas últimas parcelas = 315,00

    Considerando x o valor inicial sem nenhum acréscimo, montei a seguinte "fórmula":

    2x + 315,00 = 525,00

    2x = 210,00

    x = 105,00

  • Pega os  525.00 dos 2 últimos meses e divide com a diferença de 15.00 do 11 mês para o 12 mês.

    270(12 mês)+255(11 mês)=525.00.

    depois vai diminuindo -15 reais até chegar ao 1 mês.

    10 mês=240

    9 mês=225

    8 mês=210

    7 mês=195

    6 mês=180

    5 mês=165

    4 mês=150

    3 mês=135

    2 mês=120

    1 mês=105 reais.

    RESPOSTA= LETRA B




  • RESPOSTA B

    Minha contribuição, antes, usei os meses do ano para facilitar a imaginação !!!

    1°) De deposito de 15,00 temos quanto dinheiro no total?

    Janeiro não teve deposito de 15,00 então 11 meses x15,00 = 165,00

    Isso representa:

     Jan+15,00 = Fev

    Fev+15,00 = Março

    Março+15,00 = Abril   .... Nov+15,00 = Dez



    2°) Agora quanto foi depositado em novembro e em dezembro?

    Novembro(N) + Dezembro (D) = 525,00

    N+D=525, sendo que  D = N +15,00 , então é só  substituir:

    N+N+15=525

    2N+15,00=525

    2N=510

    N= 255

    AGORA SUBSTITUINDO N+D=525

    255+D=525

    D=270



    3°) Quanto foi depositado em Janeiro?

    Se Dezembro = 270 e dezembro vem acumulando todos os 15,00 dos demais meses,como fiz a questão: "aumentou o valor depositado em R$ 15,00, em relação ao mês anterior.", então:

    270 - 165 =  105 = Janeiro. 

  • De acordo com o enunciado, trata-se de uma Progressão Aritmética (PA).
    O termo geral da PA é dado por:
    an = a1 + (n - 1) x r,
    onde
    a1 é o primeiro termo,
    r é a razão da PA
    No caso em questão, considera-se a1 = X e tem-se que r = 15.
    Além disso, sabe-se que:
    a11 + a12 = 525      eq I
    Assim,
    a11 = X + (11 - 1) . 15 = X + 150
    a12 = X + (12 - 1) . 15 = X + 165

    Substituindo na eq I, tem-se:
    X + 150 + X + 165 = 525
    2X + 315 = 525
    2X = 525 - 315
    2X = 210
    X = 105

    Resposta B)
  • PA 

    1º - Achei o valor dos dois últimos meses:

    525,00 - 15,00=510,00

    510/2 = 255 -> Valor referente ao mês 11

    255+15 = 270,00 -> Valor referente ao mês 12

    2º - Coloquei na fórmula do PA a partir do segundo mês:

    an=a2+(n-1).r

    270=a2+(11-1).15

    270=a2+150

    a2=270-150

    a2=120

    3º - Apenas retirei os 15,00 reais que foram adicionados posteriormente:

    a2-15,00 = 105,00

  • Progressão aritmética com equação de 1º grau:
    Termo geral: a12 = a1 + 11r

     

    Legenda:
    a1: primeiro mês
    a11: penúltimo mês
    a12: último mês
    r: razão aritmética

    Dados:
    r = 15 
    Soma dos últimos 2 meses = 525

    Sistema de Equações:
    (I) a11 + a12= 525
    (II) a11 = a12 - 15

    Aplicando (II) em (I), temos:
    (a12 - 15) + a12 = 525
    a12 + a12 = 525 + 15​
    a12= (540)/2
    a12 = 270

    Assim, podemos aplicar todos os dados na fórmula do termo geral:
    a12 = a1+11r
    270 = a1 + 11*15
    a1 = 270 - 165
    a1 = 105

    GAB: B

  • A soma dos dois últimos meses é 525:


    525= x+(x+15)
    525-15=2x
    x=510/2
    x=255
    ----------------------------------------------------------
    Mês
    11º - 255 
    10º - 255-15=240
    9º - 240-15= 225
    8º - 225-15=210
    7º - 210-15=195
    6º - 195-15 = 180
    5º - 180-15= 165
    4º - 165-15 = 150
    3º - 150-15 = 135
    2º - 135-15 = 120
    1º - 120-15 = 105..........................alternativa B
  • P. A.:

     a12 = a11+ 1r (termo geral)
    a12 = a11 + 15

    a12+a11 = 525 (soma dos dois últimos meses)
    (a11+15) + a11 = 525
    2a11= 525-15
    a11= 510/2
    a11=255

    a11= a1+10r (termo geral)
    255=a1+150
    a1=255-150
    a1=105 (primeiro mês!)

  • Simples.

    A1=X

    A2=X+1*R(uma razão R$ 15,00)Logo;

    A11=X+10*R

    A12=X+11*R

    Resolvendo:

    X+10*15+X+11*15=525

    2X=525-315

    X=210/2

    X=105

  • A resposta do Antonio Costa está simples, fácil e direta!


  • 1 ano tem 12meses. A questão refer-se aos dois últimos meses, ou seja, 11 e o 12. Por tratar-se de uma PA, teremos:

    a11= a1 + 10r 

    a12 = a1 + 11r

    A soma dos dois será:

    (a1 + 10r) + ( a1 + 11r) = 525

    2a1 + 21r = 525

    2a1 + 21x15 = 525

    2a1 + 315 = 525

    2a1= 525 - 315

    a1 = 210/2

    a1 = 105

  • Mês 1 = X
    Mês 2 = X+15 = X+15x1
    Mês 3 = X+15+15 = X+15x2
    Mês 4 = X+15+15+15 = X+15x3
    .
    .
    .
    Mês 11 = X+15x10
    Mês 12 = X+15x11

    Mês 11 + Mês 12 = 525
    (X+15x10)+(X+15x11)=525
    X+150+X+165=525
    2X=525-150-165=210
    X=210/2

    X=105

  • Seja V o valor depositado neste último mês. No mês anterior a este foi depositado 15 reais a menos, ou seja, V – 15 reais. Somando esses dois últimos meses, foram depositados 525 reais:

    525 = V + (V – 15)

    525 = 2V – 15

    525 + 15 = 2V

    540 = 2V

    V = 270 reais

    Repare que este último valor é o 12º termo (afinal foram 12 depósitos mensais no período de 1 ano) de uma progressão aritmética com razão r = 15 reais e termo a12 = 270 reais. Podemos obter o valor depositado no primeiro mês lembrando que: 

    an = a1 + (n – 1) x r

    a12 = a1 + (12 – 1) x r

    270 = a1 + (11) x 15

    270 = a1 + 165

    a1 = 270 – 165 = 105 reais

    Resposta: B 

  • Sabendo que a razão é 15, pois todo mês era acrescentado 15 reais à conta, temos que a11 + 15 = a12.

    Sabendo disso, basta encontrar o valor de a11 ou a12:

    a12 = 525 - a11 && a12 = a11 + 15 => substituindo...

    a11 + 15 = 525 - a11

    2a11 = 510 => a11 = 255.

    Utilizando a fórmula do termo geral da PA:

    an = a1 + r (n-1) => a11 = a1 + 15 * (11-1)

    255 = a1 + 150 => a1 = 255-150 = 105