SóProvas


ID
2529724
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2017
Provas
Disciplina
Matemática
Assuntos

Qual o maior valor de k na equação log(kx) = 2log(x+3) para que ela tenha exatamente uma raiz?

Alternativas
Comentários
  • log(kx) = 2log(x+3)

     

    aplica propriedade do ''peteleco'' e manda o 2 pra cima do (x+3), ficando

     

    log(kx) = log(x+3)²

     

    como a parte da esqueda, tem que ser igual a da direita

     

    kx = (x+3)²

    kx = x² + 6x + 9

     

    x² + 6x - kx + 9 = 0  (pronto, chegamos na equação de segundo grau, pelo enunciado do problema já devíamos imaginar que chegaríamos a uma equação desse tipo)

     

    agora é a parte principal pra matar a questão, devemos lembrar que quando Δ  = 0 a função só tem uma raiz, pois nesse caso o gráfico da parábola irá tocar em apenas um ponto do eixo X.

     

    usando esse conceito na equação que achamos, vem:

     

    Δ  = b² - 4 a c

    Δ  = (6 - k) ² - 4 (1) (9)

    Δ  = 36 - 12k + k² - 36

    Δ  = k² - 12k

     

    isso tem que ser igual a 0, então

     

    k² - 12k = 0

    colocando o k em evidência

     

    k (k - 12) = 0

     

    k pode ser 0 ou 12, como o problema pede o maior valor para que só tenha uma raiz, então deve ser a letra c) 12

     

    Bons estudos galera, essa prova da petro de matemática veio em um nível muito acima dos concursos anteriores

  • https://youtu.be/GvNAC9MgyKk?t=8m25s

  • O enunciado está errado... não se trata de ter UMA raiz quando o delta é zero, mas sim que se tem DUAS raízes IGUAIS... uma vez que é equação do 2o grau tem que ter DUAS raízes: ou 2 raízes reais distintas entre si OU 2 raízes reais iguais entre si OU 2 raízes complexas!!!.... 

  • Rhuan, muito obrigado!!! Você tirou minhas dúvidas.

  • Questão simples, quando se sabe a propriedade de logarítmos: 2.log b = log b².

  • O enunciado não está errado. A condição de existência de um logartimo nos diz que a tem que ser maior que 0 logo a raiz zero está fora de análise.

     

  • Vamos para a resolução: LOG (KX)=2LOG (X+3);

    KX=(X+3)2;

    KX=X2+6X+9;

    X2+6X-4X+9=0;

    X2+(6-K)X +9=0

    Aí que vem a importante informação para resolver a questão. Para ter duas raízes reais e iguais ou ter exatamente uma raiz, pels fórmila de Báskara, o Delta tem que ser igual a zero. Vamos representar o delta por A. Logo, A=b2-4ac=0;

    (6-K)2-4×1×9=0;

    36-12K+K2-36=0;

    K(K-12)=0;

    K=0 e K=12

    Como.a questão pede o maior valor de K, logo a resposta da questão é K=12.

    RESP: E)12

    Informação importante: o enunciado pede o valor de K para que ela tenha exatamente uma única raiz. O certo era pedir o valor de K para que a equação tenha duas raízes reais e iguais. Questão polêmica e passiva de anulação.

     

     

  • log(kx) = 2log(x+3)

    log(kx) = log(x+3)^2

    kx = (x+3)^2

    kx = x^2 + 6x +9

    x^2 + (6-k)x + 9 = 0

    Para ter apenas uma raiz, o delta deve ser zero:

    (6 – k)^2 – 4.1.9 = 0

    (6 – k)^2 – 36 = 0

    36 – 12k + k^2 – 36 = 0

    – 12k + k^2 = 0

    k.(k – 12) = 0

    k = 0

    ou

    k – 12 = 0 -> k = 12

    O maior valor de k é 12.

    Resposta: E