SóProvas


ID
3022675
Banca
CONSULPLAN
Órgão
CFC
Ano
2019
Provas
Disciplina
Matemática Financeira
Assuntos

Determinado cliente captou um empréstimo de R$ 20.000,00 para ser liquidado em 4 prestações mensais, periódicas, iguais e postecipadas, à taxa de juros compostos de 2% a.m. Assim que efetuou o pagamento da 2ª prestação, o cliente informou que poderia pagar, naquela mesma data, as duas prestações que ainda restavam, mas se o banco concedesse algum desconto. O banco informou que poderia conceder 1% a.m. de desconto comercial simples sobre o valor de cada uma das duas prestações que ainda restavam. Considerando somente as informações apresentadas, assinale, entre as alternativas a seguir, o valor total mais próximo que o cliente desembolsaria para quitar, com desconto, as duas prestações que ainda restavam. Admita o mês comercial de 30 dias em todas as situações apresentadas e que os juros mensais estão embutidos no valor das prestações.

Alternativas
Comentários
  • Cheguei a ~10.600. Se alguém souber explicar eu agradeço.

    20000 * 1.02^4 = 21648,64 ou 4 Prestações de 5412,16

    Desconto Comercial Simples: A=N*1-in

    5412.16*1-0,01*1 + 5412.16*1-0,01*2 = 10661,94

  • Esse empréstimo é um SAF sistema de amortização francês

    Precisamos determinar o fator de amortização pela fórmula:

    A = [(1 + i)^n]-1 =

    [(1 + i)^n] x i

    (1,02)^4 - 1 = 3,807

    (1,02)^4 x 0,02

    Pra descobrir o valor da prestação basta dividir o capital do empréstimo pelo fator de amortização

    P = 20000/3,807 = 5253,48

    Desconto comercial simples das parcelas

    5253,48X(1-0,01X1) + 5253,48X(1 - 0,01X2) = 5200,94 + 5148,41 = 10349,51

    Gabarito letra B

    Qualquer dúvida me chame. O qc é ruim pra editar fórmulas.

  • Essa eu fui por eliminação e lógica.

    Se o cliente iria pagar as duas parcelas restantes seria um pouco mais de R$10.000,00; como só tem uma alternativa com esse valor aproximado as demais alternativas tem valores muito maiores ou muito menor.

  • Cálculo na HP12 C

    20.000 CHS PV (valor do empréstimo)

    2 i (taxa de juros)

    4 n (numero de períodos) --> PMT (valor de cada parcela)

    o PMT será de 5252,48

    Considerando 5252,48 para cada parcela, o banco concedeu um desconto de 1% AO MÊS para cada parcela adiantada.

    Na parcela 1, o desconto será de 1% sobre 5252,48 = 52,52

    Na parcela 2, o desconto será de 2% sobre 5252,48 = 105,05 (será 2% pois são 2 meses)

    somando o valor do desconto = 157,57

    Portanto, somando o valor das duas parcelas 5252,48 * 2 = 10504,96 - 157,57 (valor total do desconto) = 10347,39

    Gabarito letra B

  • Na minha calculadora Casio fx82MS nenhuma das formulas das resoluções dos colegas deu o mesmo valor, eu fiz assim, com quatro casas após a vírgula:

    PMT= 20.000 * (1+0,02)^4 * 0,02 / (1+0,02)^4 - 1

    PMT= 20.000 * 0,0216 / 0,0824

    PMT= 20.000 * 0,2621

    PMT= 5.242

    5.242 * (1 – 0,01 * 1) = 5.189,58

    5.242 * (1 – 0,01 * 2) = 5.137,16

    5.189,58 + 5.137,16 = 10.326,74

    Diferenciou um pouco da resposta porque o examinador faz essas contas no excel, mas como ele já deve saber disso pediu o valor aproximado

  • Só consegui responder mesmo pela lógica pq calculando eu nao consegui nao kkk

  • Esssa questão trata sobre Sistema Price e Desconto Comercial.

    Primeiro acharemos o valor das 4 parcelas iguais e sucessivas, o qual chamamos de PTM:

    PMT = Vp . [ (i.(1+i)^n) / (1+i)^n-1]

    PTM = 20.000 x [(0,02x(1+0,02)^4)/(1+0,02)^4-1) = 5.252,48

    Pronto! Achamos o valor de cada parcela.

    A questão fala que assim que a segunda parcela foi paga, houve uma negociação para pagar as duas últimas parcelas com Desconto Comercial Simples. Então, primeiro acharemos o desconto para a parcela de número 3 (que será paga com 1 mês de antecedência, já que, segundo a questão, estamos no segundo mês):

    D = F.i.n

    D = 5.252,48 x 0,01 x 1 = 52,52

    Agora, acharemos o desconto para a parcela de número 4 (que será paga com 1 mês de antecedência, já que, segundo a questão, estamos no segundo mês):

    D = F.i.n

    D = 5.252,48 x 0,01 x 2 = 105,05

    Agora que temos o valor dos dois descontos, achamos o valor a ser pago das duas últimas parcelas no mês 2:

    (5.252,48 - 52,52) + (5.252,48 - 105,05) = 10.347,39

    Bons estudos!

  • Para simular a resolução na HP:

    Link: https://simulado.estacio.br/img/Hp/?gclid=Cj0KCQjwssyJBhDXARIsAK98ITSKgZyGSJwmpfN6sf9wOlZUPSFK1aYwbESh-5WgVpuCiW4ngwKz4owaAuKlEALw_wcB