GAB: Certo
Os testes de normalidade sofrem influência do tamanho amostral quanto à sua eficiência.
Em amostras pequenas (entre 4 e 30 unidades), há inflação do erro tipo I, sendo preferidos os testes de Shapiro-Wilk e Shapiro-Francia (maior especificidade).
O teste de D'Agostino-Pearson foi desenvolvido para lidar com amostras mais numerosas (n > 100), apresentando, nesses casos, desempenho próximo ao do Shapiro-Wilk. O teste de Jarque-Bera apresenta bom desempenho na avaliação de normalidade em amostras maiores que 50 unidades, assim como o teste de Anderson-Darling , , .
O teste de Kolmogorov-Smirnov deve ser dedicado apenas à verificação de aderência da amostra a distribuições com outros parâmetros, visto que é superado pelos outros aqui descritos para testar a normalidade dos dados. Por outro lado, o emprego da correção de Lilliefors oferece uma boa opção para analisar normalidade quando a distribuição contiver muitos dados extremos e a amostra for maior que 30 unidades.
fonte: ncbi.nlm.nih.gov/pmc/articles/PMC5915855/