- ID
- 2352025
- Banca
- FCC
- Órgão
- TRT - 11ª Região (AM e RR)
- Ano
- 2017
- Provas
- Disciplina
- Estatística
- Assuntos
Um processo auto regressivo de ordem p, AR(p), pode ser escrito da forma:
Xt = ∅0 + ∅1Xt − 1 + ∅2Xt − 2 + ... + ∅pXt − p + εt onde ∅0, ∅1, ..., ∅p são parâmetros reais e εt uma sequência de variáveis aleatórias independentes e identicamente distribuídas com E(εt ) = 0 e var(εt ) = σ2.
Corresponde a um processo AR(p) estacionário:
Considere Y uma variável aleatória positiva tal que E(Y) = 8 e Var(Y) = 36. A partir dela são definidas outras duas variáveis, quais sejam:
Z = Y2 e W = ∛Y
Então, sobre a esperança matemática E[Z – W], é correto afirmar que:
Seja a variável aleatória bidimensional (X,Y) que tem distribuição uniforme no quadrado 0 < x < 1 e 0 < y < 1 e Zero fora dele. Por uma transformação linear é definida a v.a. bidimensional (Z,W) da seguinte maneira:
Z = X + Y e W = X – Y
Então, sobre essa outra variável bidimensional, é correto afirmar que:
Sejam X e Y variáveis aleatórias do tipo Bernoulli, assumindo valores x1, x2, y1 e y2 respectivamente. Também é sabido que P(X = x1 / Y = y2 ) = 0,60 e P(Y =y1 )= 0,75.
Então:
Seja (X, Y) uma variável aleatória bidimensional que em dada amostra assumiu o seguinte conjunto de valores:
(1,16), (5,8) e (9, 3)
PS: Use, nos cálculos, √43 ≅ 6,5 .
Logo, a estimativa para o coeficiente de correlação de Pearson para o par (X, Y) obtido pelo método dos momentos será aproximadamente:
Para o caso de variáveis aleatórias quaisquer, existem diversas propriedades que se aplicam diretamente à esperança matemática e ao momento central de segunda ordem.
Dentre essas propriedades está: