SóProvas



Prova CESGRANRIO - 2014 - Petrobras - Conhecimentos Básicos - Nível Médio


ID
1357111
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2014
Provas
Disciplina
Raciocínio Lógico
Assuntos

Seja P= { x ∈ N / x < 9} . Dentre os conjuntos abaixo, o único que é subconjunto de P é

Alternativas
Comentários
  • Olá amigos do QC, questão que exige conhecimento dos conjuntos.

    IN = {0, 1, 2, 3, 4, 5, 6, .....}

    Z = { ..., -3, -2, -1, 0, 1, 2, 3, ...}

    IR = {..., -3, -2, -3/2, -1, 0, 1, V2, 3/2, 2,...}

    agora vamos as alternativas:

    Seja P = { 8, 7, 6, 5, 4, 3, 2, 1, 0}

    a) {2, 3, 4, 5, 6, 7, 8, 9} errado, pois 9 não pertence ao conjunto P;

    b) {4, 5, 6, 7, 8, 9, 10,...} errado 

    c) {0, 1, 2, 3} CORRETO É SUBCONJUTO DE P;

    d) { 5, 4, 3, 2, 1, 0, -1, -2, -3, ....} errado pois os negativos não pertecem ao conjunto P;

    e) {2, 7/3, 3, 4, 17/4, 5, 6, 7} nesse conjunto como X pertence a IR, então ele pode ser fração que logicamente é um elemento que não pertence a P.


    Grande abraço e Deus é bom.


  • Útil!

  • Esta questão possui um erro de digitação. Dentre as alternativas a que melhor se aproxima da solução é a alternativa "C", porém com ressalvas. O correto seria ( -1 < x < 4) e não (- 1 < x > 4) como traz a questão.

  • Esta questão possui um erro de digitação. Dentre as alternativas a que melhor se aproxima da solução é a alternativa "C", porém com ressalvas. O correto seria ( -1 < x < 4) e não (- 1 < x > 4) como traz a questão.

  • yes!!!!!!!!!!!!

  • O conjunto P = { x ∈ N / x < 9} representa os números naturais X que são menores que 9, ou seja:


    P = (0, 1, 2, 3, 4, 5, 6, 7, 8)


    Assim, o conjunto { x ∈ Z / - 1 < x < 4}, cujo X são os números inteiros maiores que -1 e menores


    que 4, é o único das alternativas que é subconjunto de P, pois { x ∈ Z / - 1 < x < 4} = (0, 1, 2, 3) ⊂ (0, 1, 2, 3, 4, 5, 6, 7, 8).


    Resposta : C

  • Valeu Batalhador!!

  • Boa tarde! Já que perdi a inscrição para o concurso, vou treinar resolvendo questões para o próximo concurso.

    P = { x E IN I x < 9 }

    Logo,

    P = { 0,1,2,3,4,5,6,7,8 }

    O único que é subconjunto é a letra C )

    Alguém pode ter pensando que é a letra e ), mas não é, pois os REAIS admite frações, decimais... O que não aconte com os conjuntos dos inteiros Z.

  • Questão boa pra descobrir que a banca considera zero como um número natural...

  • Atenção, Leonardo!

    Zero É um Número Natural, que faz parte do Conjunto IN, números inteiros positivos!

    Quando o zero não faz parte do conjunto este é representado com um asterisco ao lado da letra IN, formando o Conjunto dos Naturais Não-Nulos, o IN*.

    IN = {0, 1, 2, 3, 4, 5...}

    IN* = {1, 2, 3, 4, 5...}

  • Z= { -4,-3, -2,-1, 0,1, 2,3,4}

    Alternativa C

  • Então, Marcos;

     

    Zero como número natural não é algo aceito por todos os matemáticos. Eu mesmo sou um que entende que número natural é todo aquele definido pelos axiomas de Peano, que definiu o 1(um) como sendo o primeiro número natural e os demais naturais como sendo a tomada de sucessores (sucessor de n é n+1) de outros naturais. Daí, grosso modo, não, zero não é natural, mas há quem entenda que sim e é bom saber se determinada banca entende dessa ou daquela forma.

  • P é formado pelos números naturais menores que 9, ou seja,

    P = 0, 1, 2, 3, 4, 5, 6, 7, 8

    Listando os números dos conjuntos de cada alternativa de resposta, temos:

    a) 2, 3, 4, 5, 6, 7, 8, 9 (naturais maiores ou iguais a 2 e menores ou iguais a 9)

    b) 5, 6, 7, 8, ... (naturais maiores que 4)

    c) 0, 1, 2, 3 (inteiros maiores que -1 e menores que 4)

    d) ..., -2, -1, 0, 1, 2, 3, 4, 5 (inteiros menores ou iguais a 5)

    e) aqui temos os números reais maiores que 1 e menores que 8. Não é possível listá-los, pois são infinitos números reais neste intervalo.

    Assim, note que somente os números da alternativa C estão totalmente compreendidos no conjunto P, ou seja, são um subconjunto de P.

    Resposta: C 

  • O que me confundiu nessa questão foi a barra (/). Ela não representa subtração de conjuntos?

  • Por que a alternativa B não está correta?


ID
1357114
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2014
Provas
Disciplina
Matemática
Assuntos

Considere a equação polinomial x3 + x2 + kx = 0 , onde k é um coeficiente real.

Se uma das raízes dessa equação é 4, as outras raízes são

Alternativas
Comentários
  • Acho que o gabarito está equivocado. A questão deve ser resolvida da seguinte forma:

    Raiz1 = 4, logo

    Raiz2 = 4³ + 4² + k4 = 0 ... 64 + 16 + k4 = 0 ... 80 + k4 = 0 ... k4 = -80 ... k = -80/4 ... k = -20

    Raiz3 = 0, logo 0³ + 0² + (-20)*0 = 0

    Resposta Alternativa (A) -20, 0


  • O gabarito está correto. -20 não é raíz é valor de k. Pra resolver é necessário por x em evidência. Uma das raízes será zero. A equação de segundo grau gerada após colocar x em evidencia tem raizes -5 e 4. Cuidado pra não marcarem a "d". Fiquei tão eufórica com a resposta que marquei errado ><

  • Ola galera do QC este exercício resolvi da seguinte modo, como o exercício narra que uma das raízes é 4 então substitui esse numero nas incógnita e encontrei o seguinte resultado:

      X3+x2+kx=0        e colocando em evidencias temos:       vou chamar d de delta

    (4)3+(4)2+k4=0          x[x2+x+(-20)]=0  então x=0 ou                    x"=-1-9

    64+16+k4=0                x2+x-20=0                    x'=-1+9                         2

    k=-80/4                         d=b2-4ac.                            2                    x'=-10/2=-5

    k=-20                            d=(1)2-4(1).(-20)      x'=8/2=4          Alternativa

                                           d=1+80 = 81

                                 x= -1-ou+ raiz de 81

                                               2a

                                  x= -1-ou+9

                                             2a



  • Como uma das raízes da equação é 4, basta substituirmos este valor em "x" para encontrarmos k, assim:

    f(4) = 4³ + 4² + 4k = 0

    64 + 16 + 4k = 0

    4k = -80

    k = -80/4

    k = -20

    Assim, f(x) = x+ x2 - 20x = 0

    Colocando o "x" em evidência:

    x(x² + x - 20) = 0

    Então x  = 0 e  x² + x - 20 = 0

    Ou seja uma das raízes é  x = 0. Resolvendo a equação x² + x - 20 = 0 pela fórmula de Bhaskara:



    Encontraremos as outras duas raízes, x =  4  e x  = - 5.

    Resposta: Alternativa B.
  • Fiz da seguinte forma,o comando apresentou a raiz 4,logo podemos  utilizar o método de  Briot-Ruffini para abaixar para 2 o grau da equação. Ficando x²+5x= 0,que possui raízes 0 e -5.

  • Como o amigo abaixo disse, resolvendo pelo algaritimo de Briot-Ruffini (pesquise sobre é bem simples) isso sai rápido 

     

    Como uma das raízes é x' = 4

     

    conseguimos determinar o valor de K substituindo os X da esquação x³ + x² + kx = 0

     

    chegando em k = -20

     

    Com a equação reduzida por briot-ruffini temos 

     

    x² + 5x = 0

     

    resolvendo a equação

     

    x' = 0   e   x'' = -5

     

    Gabarito letra B

     

    Bons estudos galera

  • Nem precisa usar Briot-Ruffini. Coloca x em evidencia e temos:

    x(x^2 + x - 20) = 0 ; para K = - 20 

    x`= 4; x" = 0  sobra como opção de resposta -5, -20 e 20. Não pode ser nem 20 e nem -20 pois os valores são baixos, restando como opção apenas  -5. Agora é só substitui na equação e testar:

    (-5)^2 - 5 -20 = 0 ==> 25 - 25 = 0; então as raizes são x' = 0; x'' = 4 e x''' = -5 . Letra B.

     

     

  • https://www.youtube.com/watch?v=JA70CIj8zTA

  • É só usar as relações de Girard, galera!

    Soma das raízes:

    x1 + x2 + x3 = -b/a

    4 + x2 + x3 = -1

    x2 + x3 = -5

    A única alternativa que a soma das outras raízes da -5 é a alternativa B

    GABARITO: LETRA B


ID
1357120
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2014
Provas
Disciplina
Matemática
Assuntos

João retirou de um baralho as 7 cartas de copas numeradas de 2 a 8 e as colocou dentro de um saco plástico opaco. Em seguida, pediu a seu amigo Augusto que retirasse de dentro desse saco, sem olhar, duas cartas.

Qual é a probabilidade de que a soma dos números escritos nas cartas retiradas por Augusto seja maior do que 10?

Alternativas
Comentários
  • Gabarito: A

    Temos 7 cartas numeradas:(2,3,4,5,6,7,8);Números de casos possíveis: Todas as somas possíveis: n(S)

    (2,3),(2,4),(2,5),(2,6),(2,7),(2,8)

    (3,2),(3,4),(3,5)(3,6),(3,7),(3,8)

    (4,2),(4,3),(4,5),(4,6),(4,7),(4,8)

    (5,2),(5,3),(5,4),(5,6),(5,7),(5,8)

    (6,2),(6,3),(6,4),(6,5),(6,7),(6,8)

    (7,2),(7,3)(7,4),(7,5),(7,6).(7,8)

    (8,2),(8,3),(8,4),(8,5),(8,6),(8,7)=>totalizando 42 somas possíveis; e o número de casos favoráveis são as somas das cartas maiores que 10: (3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,5),(6,7),(6,8),(7,4),(7,5),(7,6).(7,8),(8,3),(8,4),(8,5),(8,6),(8,7) totalizados 18 casos favoráveis:n(A)

    Sabendo que P(A)= n(A)/n(S)=18/42=3/7.


    Bons estudos!! 

  • Olá Ane...


    Nesse caso os valores (3, 8) não é a mesma coisa que (8, 3)? Achei que os casos possíveis seria 9 opções. Meu raciocínio está equivocado?

  • Eu resolvi de uma outra forma... 

    Vê se você concorda (Luciano)...


    São oito cartas do baralho: 2, 3, 4, 5, 6, 7, 8. 

    Ao meu ver: (3,8) é o mesmo que (8,3). Por isso, o inverso é a repetição (além do mais, não importa a ordem de retirada das cartas).

    Logo:

    U= {(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)}

    n(U)= 21

    O evento pede que as cartas retiradas somem números maiores que dez.

    Logo:

    E= {(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)}

    n(E)= 9

    A própria questão diz que trata-se de probabilidade.

    Uma breve explicação: U= todos os resultados possíveis de um experimento aleatório. E, E= subconjunto do espaço amostral, ou seja, evento.

    Por fim: O resultado= 9/21. Simplificando por 3 para encontrar a resposta do gabarito: 3/7.


  • O meu foi mais simples: vejamos, entre 2 e 8 temos; 2,3,4,5,6,7,8 = a 7 (numerais) somando de fora pra dentro; [ 2+8=10 / 3+7=10 / 4+6=10 }
    ou seja= temos 3 chances em 7 oportunidades, então 3/7

  • Marcelo, a questão pede que a soma seja maior que 10 e não igual a 10, a sua resolução está mais simples sim, mas acho que está errada! :(

  • P(A)= n(a)/n(e)       Pede que a soma seja maior que 10, ou seja, não pode ser 10. Então temos 18 possibilidades da soma ser maior que 10 (n(a)=18. E o numero total de possibilidades é  42 (7x6, porque não se pode repetir a mesma carta). logo temos 18/42, simplificando = 3/7
  • Temos as seguintes combinações para que a soma das duas cartas deem maior do que 10:


    Primeira forma: ( Pois mesmo sendo as mesmas cartas, a ordem importará).


    (6 + 5), (7 + 4), (7 + 5), (7 + 6), (8 + 3), (8 + 4), (8 + 5), (8 + 6), (8 + 7).


    Segunda forma (invertendo a ordem das cartas):


    (5 + 6), (4 + 7), (5 + 7), (6 + 7), (3 + 8), (4 + 8), (5 + 8), (6 + 8), (7 + 8).


    Assim temos 18 possibilidades para o nosso caso particular. Podemos tirar na 1a tentativa qualquer


    uma das 7 cartas dentro do saco, já na 2a, por termos já tirado uma, sobraram 6 cartas. Assim nosso


    número de casos possíveis será 6 x 7 = 42.


    Logo a probabilidade será P = 18/42 = 9/21 = 3/7.


    Resposta : A


  • Numa questão de Probabilidade P = (numero de eventos possíveis) / (numero total de eventos)

    nessa questão temos 7 elementos (cartas de 2 a 8 = 2,3,4,5,6,7 e 8)

    como pede soma maior que 10 as possíveis combinações são

    3 e 8 / 4 e 7 / 4 e 8 / 5 e 6 / 5 e 7 / 5 e 8/ 6 e 7/ 6 e 8/ 7 e 8

    o total de eventos possíveis é 9

    para calcular o evento total combinação 7 2 a 2 -> C7,2 = 7!/(2!5!)

    C7,2 = 7x6x5! / 2x1x5! = 7x6 / 2 = 21

    Então: P = eventos possiveis / eventos totais

    P = 9/21 = 3/7

  • Também resolvi pelo método que alguns colegas já apresentaram.

    Temos 7 carta numeradas assim: 2-3-4-5-6-7-8

    E a Cesgranrio nos pergunta:  "...pediu a seu amigo Augusto que retirasse de dentro desse saco, sem olhar, duas cartas...Qual é a probabilidade de que a soma dos números escritos nas cartas retiradas por Augusto seja maior do que 10?"

    O que devemos fazer. Primeiro é saber quantas combinações 2a2 podemos fazer com essas 7 cartas. Como vamos fazer isso? Vamos usar COMBINAÇÃO!!

    C7,2=        7!         7x6x5! = 7x3=21

                     2!5!         2x1  5!                


    "Mas o que esse 21 significa?" Ele é justamente a quantidade de combinações possíveis com todas as cartas, é o nosso espaço amostral.

    Agora, quantas combinações são possíveis com as 7 cartas para que possamos encontrar soma maior que 10?

    Isso é mais fácil. Vamos somar: 2-3-4-5-6-7-8

    2+8=10, logo não serve. Queremos maoir que 10.

    3+8=11 .

    4+7=11

    4+8=12

    5+6=11

    5+7=12

    5+8=13.

    6+7=13

    6+8=14

    7+8=15

    Logo, temos 9 chances em 21 possibilidades. Fica assim 9/21. Mas isso dá para simplificar: 3/7.

    Gabarito? A de Abacate;


  • Alguém poderia me informar porque a ordem das cartas não está sendo considerada? Estou com esta dúvida. Vlw

  • Frederico, se fosse um anagrama de letras em uma palavra, por exemplo, a ordem importaria. Mas concorda que o conjunto de números: {7;6} é igual a {6; 7} ? Tente sempre compreender a questão. eu, por exemplo, não uso formulas para resolver. vou pela lógica da questão. 

  • Resolvi assim:

    Cada combinação eu tenho 2 possibilidades por exemplo 3 com 8 e 8 com 3:

    Logo,

    (3,8) -> 2(1/7*1/6)

    (4,7) -> 2(1/7*1/6)

    (4,8) -> 2(1/7*1/6) 

    (5,6) -> 2(1/7*1/6)

    (5,7) -> 2(1/7*1/6)

    (5,8) -> 2(1/7*1/6)

    (6,7) -> 2(1/7*1/6)

    (6,8) -> 2(1/7*1/6)

    (7,8) -> 2(1/7*1/6)

    Concluindo: 2(1/7*1/6) = 1/21 como posso ter OU uma OU outra forma de somar mais que 10 então será 1/21 nove vezes.

    1/21 x 9 = 9/21 = 3/7

  • As duas cartas são uma combinação, suas ordens não importam.

    Então ---> 9/21 =3/7

  • 2 3 4 5 6 7 8  são as cartas


    Possibilidades de dois números somados serem maior que 10 = 9 possibilidades

    8+3, 8+4, 8+5, 8+6, 8+7


    7+6,7+5,7+4


    6+5


    Possibilidades de combinação entre dois números:

    Além das 9, temos também 
    2+3,  2+4,  2+5,  2+6,  2+7,  2+8

    3+4  ,3+5  ,3+6  ,3+7

    4+5,  4+6



    Totalizando 12 possibilidades que somadas às 9, resultam em 21 possibilidades de combinação.

    Chegamos à conclusão que serão 9 /21 (:3)...................3/7..............alternativa A
  • Eu cheguei a resposta de uma maneira mais "cheia" eu diria. Fiz as possibilidade e multipliquei por dois pois considerei o seu inverso, logo eu tinha 18(9+9) possibilidades da sequência dar um total maior que 10. E fiz uma análise combinatória de 7 cartas e suas possibilidade. Se de 7 tiro 1, sobram 6, se de 6 tiro mais 1, (logo puxei duas). São 7.6=42 possibilidades de combinações. Destas 42, eu apenas quero 18 combinações. Logo temos 18/42 dividido(simplificado) por 2 = 9/21 mais uma vez dividido(simplificado) por 3 = 3/7.

    OBS: Sei que parece mais complexo, mas pra min foi mais simples e diminuiu o risco de dar incorreto. Mas se eu estiver errado, por favor, me corrigir. Obrigado!

  • Em questoes assim é importante saber como CONTAR:

    Resolvendo pelo PFC

    1º passo) encontrar o espaço amostral: 7*6=42

    Pq? a retirada de cartas não é com reposição (senao teria sido dito), entao cabe o PFC ( e se foi usado o PFC, a ordem vai importar)

    2º passo)

    encontrando as possibilidades:

    Se utilizamos o PFC, a ordem aqui vai nos importar na hora de contabilizar a probabilidade. É onde muita gente erra. Se a ordem vai importar entao vou contar da seguinte forma:

    3; 8 e 8; 3

    4; 8 e 8; 4

    5; 8 e 8; 5

    6; 8 e 8; 6

    7; 8 e 8; 7

    4; 7 e 7; 4

    5; 7 e 7; 5

    6; 7 e 7; 6

    5; 6 e 6; 5

    Ou seja, 18 possibilidades respeitando o critério (soma maior que 10)

    Aplicando a probabilidade no espaço amostral: 18/42 = 3/7


  • Eu fiz no método de raciocínio lógico vejamos:
    Observei quantas cartas somadas uma com a outra dariam o resultado 10:
    7 Cartas numeradas de 02 a 08, então são:

    2  + 8 = 10    
    3 + 7 = 10    
    4 + 6 = 10   
    5    
    6   (JA USADO COM O 4)
    7   (JA USADO COM O 3) 
    8   (JA USADO COM O 2)

    Concluímos que somente existem 03 possibilidades para estes sete números de cartas citados ficamos então com a resposta 03/07




  • Temos 7 cartas numeradas:(2,3,4,5,6,7,8);Números de casos possíveis é o espaço amostral
    (2,2)(2,3),(2,4),(2,5),(2,6),(2,7),(2,8)
    (3,2),(3,3)(3,4),(3,5)(3,6),(3,7),(3,8)
    (4,2),(4,3),(4,4)(4,5),(4,6),(4,7),(4,8)
    (5,2),(5,3),(5,4),(5,5)(5,6),(5,7),(5,8)
    (6,2),(6,3),(6,4),(6,5),(6,6)(6,7),(6,8)
    (7,2),(7,3)(7,4),(7,5),(7,6).(7,7)(7,8)
    (8,2),(8,3),(8,4),(8,5),(8,6),(8,7)(8,8)

    EA=  7*7 = 49A soma maior que 10 equivale aos eventos abaixo:(3,8)
    (4,7),(4,8)
    (5,6),(5,7),(5,8)
    (6,5),(6,6)(6,7),(6,8)
    (7,4),(7,5),(7,6).(7,7)(7,8)
    (8,3),(8,4),(8,5),(8,6),(8,7)(8,8)
    Quero= 21P = Quero/EA = 21/ 49 (simplifica por 7)= 3/7
  • diana santos.

    Na verdade o espaço amostral é de 42 por que as cartas não se repetem.

    Fica 18/42, ou seja, 3/7.

    Dá a mesma resposta certa.

  • Temos 9 opções de tirarmos resultado acima de 10 em 21 opções no total

    9/21 ==>  3/7

  • quem fez por combinação está errado. A ordem importa: tira 2,4  e 4,2 são duas combinações diferentes. Eu tiro uma carta e depois tiro outra carta.

  • RESOLVI DA SEGUINTE FORMA:

    1º PRIMEIRO OS QUE ULTRAPASSARIAM 10:

    (3,8)
    (4,7); (4,8)
    (5,6);(5,7);(5,8)
    (6,7);(6,8)
    (7,8)

    2° TODAS AS POSSIBILIDADES:

    (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
    (3,4) (3,5) (3,6) (3,7) (3,8)
    (4,5) (4,6) (4,7) (4,8)
    (5,6) (5,7) (5,8)
    (6,7)(6,8)
    (7,8)

    ___________________________________________________________________________________________________________________

    # NÚMERO DOS QUE ULTRAPASSAM 10 DIVIDIO PELO TOTAL DAS POSSIBILIDADES: 9/21 = SIMPLIFICANDO =>3/7.
    ___________________________________________________________________________________________________________________
     

  • aplicando as 9 possibilidades  9/7 x 2 cartas das  6 restantes =   9/7 x 2/6 = 18/42 == 3/7  fiz assim.

  • Sete cartas: 2, 3, 4, 5, 6, 7, 8


    Possibilidades de dois números somados serem maiores que 10:

     

    8 + 3 = 11

    8 + 4 = 12

    8 + 5 = 13

    8 + 6 = 14

    8 + 7 = 15

    7 + 6 = 13

    7 + 5 = 12

    7 + 4 = 11

    6 + 5 = 11


    Nove possibilidades


    Possibilidades de dois números somados serem menores ou iguais a 10:


    2 + 3 = 5

    2 + 4 = 6

    2 + 5 = 7

    2 + 6 = 8

    2 + 7 = 9

    2 + 8 = 10

    3 + 4 = 7

    3 + 5 = 8

    3 + 6 = 9

    3 + 7 = 10

    4 + 5 = 9

    4 + 6 = 10


    Doze possibilidades 


    9 + 12 = 21 (total de combinações de soma de dois números)

    9 / 21 (divide-se por 3)

    3 / 7

  • Não vi onde a questão pediu para somar menor que 10 ou igual a 10. 

    Fiz igual o Melância Man somando apenas os maiores que 10. 

  • 7x7 total de possibilidades

    21 Total de combinações

    21/7*7 = 21/49

    21/49 ( simplifica por 7)

    3/7 Gab A

  • Usando prob complementar.

    total de Casos ->> C(7;2) = 21

    casos que dão menos que 10

    23;24;25;26;27;28-->6 casos

    34;35;36;37-->4 casos

    45;46-->2

    Total de casos em que resulta um valor menor que 10 = 12

    Logo

    1-12/21 = 3/7

    ***a ordem não importa (logo combinação e não arranjo)

  • Primeiro precisamos descobrir o espaço amostral:

    Temos 7 cartas numeradas (2,3,4,5,6,7,8) que serão retiradas de 2 em 2 e somadas depois.

    Retiradas possíveis - A ordem não importa porque os valores serão somados e para soma não importa a ordem:

    (2,3);(2,4);(2,5);(2,6);(2,7);(2,8)

    (3,4);(3,5);(3,6);(3,7);(3,8)

    (4,5);(4,6);(4,7);(4,8)

    (5,6);(5,7);(5,8)

    (6,7);(6,8)

    (7,8)

    Temos um espaço amostral = 21

    Agora precisamos saber quais retiradas de cartas dá soma maior que 10

    (3,8);(4,7);(4,8)(5,6);(5,7);(5,8);(6,7);(6,8);(7,8)

    Temos 9 possibilidades

    então a probabilidade fica 9/21 = 3/7

    Resposta A

     

     

  • Como a ordem não importa, o número total de se retirar duas cartas de sete, é dado pela combinação de C7,2=21. As possibilidades de a soma ser maior que 10 são nove :(3,8);(4,7);(4,8);(5,6);(5,7);(5,8);(6,7);(6,8);(7,8). Logo, a probabilidade será dada por P= 9/21, que simplificada será igual a 3/7.


ID
1357126
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2014
Provas
Disciplina
Matemática
Assuntos

Durante um ano, Eduardo efetuou um depósito por mês em sua conta poupança. A cada mês, a partir do segundo, Eduardo aumentou o valor depositado em R$ 15,00, em relação ao mês anterior.

Se o total por ele depositado nos dois últimos meses foi R$ 525,00, quantos reais Eduardo depositou no primeiro mês?

Alternativas
Comentários
  • 1º depósito:  x    2º depósito:  x + 15    11º depósito: x + 10 . 15 (razão) = x + 150

    12º depósito:  x + 165

    Assim,  x + 150 + x + 165 = 525    2x = 525 - 315    x = 210 : 2 = 105    letra b) 

  • x+165= 525-(x+150)

    2x=525-165-150

    2x=210

    x=210/2=105,00R$ alternativa B

  • Não entendi esta resolução..

    De onde veio o 150 e 165?..

  • eu fiz assim...

    15,00*11meses=165,00

    525 a soma dos ultimos 2 depositos;

    logo:

    525,00-15,00= 510/2=255,00 

    165,00-15,00=150,00

    255,00-150,00=105,00 ----------> alternativa b

  • Renato Ferraz Você faz como uma PA (progressão Aritmética):
    O 12º termo -> 
    A12=A1+(n-1)x15(a razão) => A12 = A1 + (11)x15 => A12 = A1 + 165 
    A11=A1+(n-1)x15(a razão) => A11 = A1 + (10)x15 => A11 = A1 + 150
    Logo, a questão diz que A11 + A12 = 525:
    somando A12 + A11 => 2xA1 + (165+150) => 2xA1 + 315 = 525 =>   2xA1=525-315 = > 2xA1 = 210
                     A1 = 210/2 = 105;
    Com o valor de A1 e a razão, você calcula qualquer termo da PA.



  • Primeiro mês: x

    Segundo mês: x + 15

    Décimo primeiro mês: x + 10 (meses anteriores) x 15 (valor a mais do depósito)


    x + 10 x 15 = x + 150 (Décimo primeiro mês)


    Décimo segundo mês: x + 150 + 15

    x + 150 + 15 = x + 165


    Décimo primeiro mês + décimo segundo mês = total desses dois últimos meses = x + 150 + x + 165 = 525


    x + 150 + x + 165 = 525

    2x + 315 = 525

    2x = 525 + 315

    2x = 210

    x = 105

  • Eu fiz assim: 

    Acréscimo do mês 11 = 15,00 x 10 meses = 150,00

    Acréscimo do mês 12 = 15,00 x 11 meses = 165,00

    Total de acréscimos das duas últimas parcelas = 315,00

    Considerando x o valor inicial sem nenhum acréscimo, montei a seguinte "fórmula":

    2x + 315,00 = 525,00

    2x = 210,00

    x = 105,00

  • Pega os  525.00 dos 2 últimos meses e divide com a diferença de 15.00 do 11 mês para o 12 mês.

    270(12 mês)+255(11 mês)=525.00.

    depois vai diminuindo -15 reais até chegar ao 1 mês.

    10 mês=240

    9 mês=225

    8 mês=210

    7 mês=195

    6 mês=180

    5 mês=165

    4 mês=150

    3 mês=135

    2 mês=120

    1 mês=105 reais.

    RESPOSTA= LETRA B




  • RESPOSTA B

    Minha contribuição, antes, usei os meses do ano para facilitar a imaginação !!!

    1°) De deposito de 15,00 temos quanto dinheiro no total?

    Janeiro não teve deposito de 15,00 então 11 meses x15,00 = 165,00

    Isso representa:

     Jan+15,00 = Fev

    Fev+15,00 = Março

    Março+15,00 = Abril   .... Nov+15,00 = Dez



    2°) Agora quanto foi depositado em novembro e em dezembro?

    Novembro(N) + Dezembro (D) = 525,00

    N+D=525, sendo que  D = N +15,00 , então é só  substituir:

    N+N+15=525

    2N+15,00=525

    2N=510

    N= 255

    AGORA SUBSTITUINDO N+D=525

    255+D=525

    D=270



    3°) Quanto foi depositado em Janeiro?

    Se Dezembro = 270 e dezembro vem acumulando todos os 15,00 dos demais meses,como fiz a questão: "aumentou o valor depositado em R$ 15,00, em relação ao mês anterior.", então:

    270 - 165 =  105 = Janeiro. 

  • De acordo com o enunciado, trata-se de uma Progressão Aritmética (PA).
    O termo geral da PA é dado por:
    an = a1 + (n - 1) x r,
    onde
    a1 é o primeiro termo,
    r é a razão da PA
    No caso em questão, considera-se a1 = X e tem-se que r = 15.
    Além disso, sabe-se que:
    a11 + a12 = 525      eq I
    Assim,
    a11 = X + (11 - 1) . 15 = X + 150
    a12 = X + (12 - 1) . 15 = X + 165

    Substituindo na eq I, tem-se:
    X + 150 + X + 165 = 525
    2X + 315 = 525
    2X = 525 - 315
    2X = 210
    X = 105

    Resposta B)
  • PA 

    1º - Achei o valor dos dois últimos meses:

    525,00 - 15,00=510,00

    510/2 = 255 -> Valor referente ao mês 11

    255+15 = 270,00 -> Valor referente ao mês 12

    2º - Coloquei na fórmula do PA a partir do segundo mês:

    an=a2+(n-1).r

    270=a2+(11-1).15

    270=a2+150

    a2=270-150

    a2=120

    3º - Apenas retirei os 15,00 reais que foram adicionados posteriormente:

    a2-15,00 = 105,00

  • Progressão aritmética com equação de 1º grau:
    Termo geral: a12 = a1 + 11r

     

    Legenda:
    a1: primeiro mês
    a11: penúltimo mês
    a12: último mês
    r: razão aritmética

    Dados:
    r = 15 
    Soma dos últimos 2 meses = 525

    Sistema de Equações:
    (I) a11 + a12= 525
    (II) a11 = a12 - 15

    Aplicando (II) em (I), temos:
    (a12 - 15) + a12 = 525
    a12 + a12 = 525 + 15​
    a12= (540)/2
    a12 = 270

    Assim, podemos aplicar todos os dados na fórmula do termo geral:
    a12 = a1+11r
    270 = a1 + 11*15
    a1 = 270 - 165
    a1 = 105

    GAB: B

  • A soma dos dois últimos meses é 525:


    525= x+(x+15)
    525-15=2x
    x=510/2
    x=255
    ----------------------------------------------------------
    Mês
    11º - 255 
    10º - 255-15=240
    9º - 240-15= 225
    8º - 225-15=210
    7º - 210-15=195
    6º - 195-15 = 180
    5º - 180-15= 165
    4º - 165-15 = 150
    3º - 150-15 = 135
    2º - 135-15 = 120
    1º - 120-15 = 105..........................alternativa B
  • P. A.:

     a12 = a11+ 1r (termo geral)
    a12 = a11 + 15

    a12+a11 = 525 (soma dos dois últimos meses)
    (a11+15) + a11 = 525
    2a11= 525-15
    a11= 510/2
    a11=255

    a11= a1+10r (termo geral)
    255=a1+150
    a1=255-150
    a1=105 (primeiro mês!)

  • Simples.

    A1=X

    A2=X+1*R(uma razão R$ 15,00)Logo;

    A11=X+10*R

    A12=X+11*R

    Resolvendo:

    X+10*15+X+11*15=525

    2X=525-315

    X=210/2

    X=105

  • A resposta do Antonio Costa está simples, fácil e direta!


  • 1 ano tem 12meses. A questão refer-se aos dois últimos meses, ou seja, 11 e o 12. Por tratar-se de uma PA, teremos:

    a11= a1 + 10r 

    a12 = a1 + 11r

    A soma dos dois será:

    (a1 + 10r) + ( a1 + 11r) = 525

    2a1 + 21r = 525

    2a1 + 21x15 = 525

    2a1 + 315 = 525

    2a1= 525 - 315

    a1 = 210/2

    a1 = 105

  • Mês 1 = X
    Mês 2 = X+15 = X+15x1
    Mês 3 = X+15+15 = X+15x2
    Mês 4 = X+15+15+15 = X+15x3
    .
    .
    .
    Mês 11 = X+15x10
    Mês 12 = X+15x11

    Mês 11 + Mês 12 = 525
    (X+15x10)+(X+15x11)=525
    X+150+X+165=525
    2X=525-150-165=210
    X=210/2

    X=105

  • Seja V o valor depositado neste último mês. No mês anterior a este foi depositado 15 reais a menos, ou seja, V – 15 reais. Somando esses dois últimos meses, foram depositados 525 reais:

    525 = V + (V – 15)

    525 = 2V – 15

    525 + 15 = 2V

    540 = 2V

    V = 270 reais

    Repare que este último valor é o 12º termo (afinal foram 12 depósitos mensais no período de 1 ano) de uma progressão aritmética com razão r = 15 reais e termo a12 = 270 reais. Podemos obter o valor depositado no primeiro mês lembrando que: 

    an = a1 + (n – 1) x r

    a12 = a1 + (12 – 1) x r

    270 = a1 + (11) x 15

    270 = a1 + 165

    a1 = 270 – 165 = 105 reais

    Resposta: B 

  • Sabendo que a razão é 15, pois todo mês era acrescentado 15 reais à conta, temos que a11 + 15 = a12.

    Sabendo disso, basta encontrar o valor de a11 ou a12:

    a12 = 525 - a11 && a12 = a11 + 15 => substituindo...

    a11 + 15 = 525 - a11

    2a11 = 510 => a11 = 255.

    Utilizando a fórmula do termo geral da PA:

    an = a1 + r (n-1) => a11 = a1 + 15 * (11-1)

    255 = a1 + 150 => a1 = 255-150 = 105


ID
1357129
Banca
CESGRANRIO
Órgão
Petrobras
Ano
2014
Provas
Disciplina
Matemática
Assuntos

Dentro de uma gaveta há garfos, facas e colheres, totalizando 48 talheres. A soma das quantidades de garfos e de facas corresponde ao dobro da quantidade de colheres. Se fossem colocadas mais 6 facas dentro dessa gaveta, e nenhuma colher fosse retirada, a quantidade de facas se igualaria à de colheres.

Quantos garfos há nessa gaveta?

Alternativas
Comentários
  • x= colher

    y= garfos

    z=faca

    x + y + z = 48

    y + z = 2x

    6 + z = x                        z = 2x - y          x + y + z = 48                

                                                                 x + y + 2x - y = 48               

                                                                         3x = 48

                                                                            x=16                       

    16 colheres. 

    Se fossem colocadas mais 6 facas dentro dessa gaveta, e nenhuma colher fosse retirada, a quantidade de facas se igualaria à de colheres.            6 + z = 16                z= 10

    10 facas

                            y + z = 2x               y + 10 = 32


    resposta = 22 garfos

       

  • Do enunciado temos,

    g+f+c=48

    g+f=2c  (garfo e faca é igual ao dobro de colheres, conforme enunciado).

    ******

    2c+c=48

    3c=48

    c=16

    ******

    g+16+16=54       obs: 54 é a soma de 48 talheres mais 6 novas facas.

    g+32=54

    g=54-32

    g=22

  • G+F+C=48      Como a soma de garfo e faca é o dobro de colher então temos:

    G+F=2C              2C+C=48       Obtendo-se o Nº de colheres é só substituir no sistema de equações

    F+6=C                  3C=48                   F+6=C       G+F=2C

                                    C=48/3=16           F+6=16      G+10=2.16

                                                                  F=10            G=22 Como o exercício quer o numero de garfos, então é a alternativa E

  • Eu fiz de uma forma bem mais fácil, observe:

    G + F = 2 . C

    São 48 talheres + 6 facas = 54

    Se o número de facas é igual ao número de colheres, nas alternativas, busque uma quantidade que subtraída do valor total, seja a soma facas e colheres. Por exemplo:

    54 - 22 = 32

    32 / 2 = 16 (quantidade de facas e colheres)

    Agora faça a prova: 22 + 32 = 54. (Valor total de talheres)

    Resposta: Alternativa "e" 22 garfos.

  • Eu fiz essa questão em menos de 2 minutos..

    Total de Talheres. 48

    Dividido por 3 = 16 Colheres, 16 facas e 16 colheres

    Como é colocado mais 6 facas ficando com 22 não bate com o total de colheres, então passei para 22 os garfos e ficando=

    22 garfos.....10 facas + 6 e foi colocado=16 e as 16 colheres.... resposta 22

  • Dentro de uma gaveta tem:

    C olheres

    F acas

    G arfos

    Se ele fala que a soma  das quantidades de G afos+ F acas= o de C colheres.

    supostamente, 48/3=16     ficou para cada um:

    G = 16

    F= 16  

    e C= 16

    A soma das G afos + F acas = 32

    Ele fala que se fosse colocado mais 6 ( seis) F acas dentro da gaveta, 

    F aca tem 16 + 6= 22....Simples.... 

    Questão boba...

  • G=GARFOS      F=FACAS      C=COLHERES

    G+F+C = 48



    G+F=48-C

    -------------------------------

    G+F=2C

    --------------------------------

    SUBSTITUINDO:

    G+F=48-C

    2C=48-C

    C=48/2

    C=16

    ---------------------------------------------------

    F+6=C

    F+6=16

    F=10

    ------------------------------

    G+F+C=48

    G+10+16=48

    G=48-26

    G=22..............................ALTERNATIVA E
  • Gente,

    F+G+C= 48

    F+G= 32, portanto C= 16

    48/3= 16 (F= 16; G= 16; C= 16)

    F(16) +6= 22

    Mas a questão pergunta quantos GARFOS tem na gaveta...GARFOS =16 ! Sinceramente não entendi pq a resposta deu 22. =\

  • Natália Motano, você não deve dividir o número total de elementos na gaveta por 3, pois não podemos assumir que o número de garfos é igual ao número de facas.

     

    De fato, como demonstaram os colegas, o número de facas é igual a 10 e o número de garfos é igual a 22.

  • Acho que deste jeito ficou mais simples e compreensível.

    G = qde de garfos; f = qde de facas; c = qde de colheres

    (I) G + F + C = 48    
    (II) G + F =2C

    Substituindo II em I
    2C + C = 48  3C = 48   C = 48/3   C= 16

    (III) F + 6 = C  F + 6 = 16    F= 10

    Colocando os valores encontrados na I temos:
    G + 10 + 16 = 48
    G + 26 = 48
    G = 48 - 26
    G = 22

  • F+C+G=48

    F+G=2C==>2C+C=48 ==>C=16

    MAIS 6 FACAS TEMOS F=C, LOGO:

    F+C+G=48+6 ==>C+C+G=54 ==>2C+G=54==>G=54-32=22

  • Dentro de uma gaveta há garfos, facas e colheres, totalizando 48 talheres. 

     

    G + F + C = 48

     

    A soma das quantidades de garfos e de facas corresponde ao dobro da quantidade de colheres.

     

    G + F = 2C

     

    Se fossem colocadas mais 6 facas dentro dessa gaveta, e nenhuma colher fosse retirada, a quantidade de facas se igualaria à de colheres. 

     

    48 + 6 = 54

     

    Quantos garfos há nessa gaveta?

     

    G + F + C = 48

    G + F = 2C

    2C + C = 48

    3C = 48

    C = 16

     

    G + 16 (F) + 16 (C) = 54

    G + 32 = 54

    G = 22