Galera, há um erro, na verdade dois erros, nos dados que a banca disponibilizou para o cálculo: 1º : (1,02) -5 = 0,90 ta errado o valor é 0,91 e (1,02) -10 = 0,81 na verdade é 0,82. Por isso, que o valor presente das 5 primeiras prestação de 1.000 é 5.000. Mas como temos que utilizar as informações disponibilizadas pela banca, esquecem a lógica e segue a fórmula.
A ideia é trazer todas as parcelas para o valor presente para saber o valor do empréstimo tomado. Como estamos falando em prestações, não podemos simplesmente fazer 1.000/1/0,9 (fórmula do VPL), porque, estaríamos trazendo apenas a quinta parcela para o valor presenta. Desta forma, quando há prestações e quer saber o VP de todas as prestações. deve-se utilizar a fórmula do fluxo de caixa modelo padrão.
Pv = PMT * (1 – (1 + i) ^-n) / i
Neste caso, aplica-se a fórmula para as 5 primeiras prestações de 1000 e para as 10 de 2000. Porém, quando trazemos as 10 prestações de 2000 para o valor presente, na verdade, estamos trazendo-as para o período 5, não para o período inicial, visto que essas prestações de 2000 iniciam ao final das primeiras prestações. Mas, e agora? é muito fácil. Basta utilizar esse valor encontrado com as 10 prestações de 2000 como fv, e descapitalizá-lo (traze-lo a valor presente).
VP = FV / 1/(1+1)^-n
Depois, soma-se os valor encontrado pela fórmula do fluxo de caixa das 5 primeiras prestações com o valor do VPL encontrado. Assim, num passe de mágica rsrs, teremos o o valor inicial do empréstimo.
Deu para entender galera?
Abraço!
Domingão é o dia!!! Deus abençoe à todos nós!!!
Vou tentar ajudar desde o início para quem não entendeu o que é valor presente (mas simplificando), mas é importante entender bem o conceito dos juros compostos e valor presente líquido, cuja explicação não tem como fazer aqui. Não basta decorar as fórmulas.
Para entender o Valor Presente é preciso entender os juros compostos. Sabemos que um Capital de 1.000 investido a juros compostos de 2% ao mês por um período de 5 meses resulta num montante (capital investido + juros) de 1.104,08. Ou seja: 1.000*(1,02*1,02*1,02*1,02*1,02). Isso nos leva a fórmula dos juros compostos que é M = C*(1+i)n, onde i é a taxa e o n é igual ao número de períodos. Assim a taxa é multiplicada por ela mesma por tantas vezes quanto for o número de períodos. Isso se chama capitalização a juros compostos.
Quando calculamos o valor presente estamos fazendo o processo inverso, portanto descapitalizando um montante para chegar ao capital investido.
Assim se trouxermos 1.104,08, a valor presente (ou seja, descapitalizando) pelo mesmo período de 5 meses e mesma taxa de juros de 2% temos: 1,104,08 * (1/1,02/1,02/1,02/1,02/1,02) = 1.000 ou, pela fórmula C=M*(1+i)-n. Observem que, como estamos fazendo o processo inverso, invertemos a fórmula ao colocarmos o expoente negativo.
Como não temos calculadora para fazer todo o cálculo acima, a banca é obrigada a nos dar o fator de multiplicação, por isso o problema nos diz que o fator para 5 períodos é de 0,9 que equivale a (1+i)-5 e, para 10 períodos, é de 0,81 que equivale a (1+i)-10. Apenas para fins didáticos, observe que estamos descapitalizando, se estivéssemos capitalizando, as mesma taxas seriam 1,1041 para 5 períodos e 1,2190 para 10 períodos).
Se o problema não tivesse prestações bastaria trazer os valores dos montantes a valor presente para saber qual o Capital investido. Nesse caso temos que usar a fórmula com PMT (prestações) e trazer cada uma delas a valor presente. Vamos começar pelas 5 prestações de 1.000 reais.
VP = PMT [1 - (1+i)-n] / i
O problema nos diz que (1+i)-5 = 0,9. Então vamos substituir esse valor na fórmula e o PMT por 1.000. Fica assim:
1.000 [1 - (0,90)] / 0,02 = 1.000 * 0,1 / 0,02 = 5.000
Agora utilizaremos a mesma fórmula para a prestação de 2.000, mas substituindo pelo fator para 10 períodos que é de 0,81.
2.000 [1 - (0,81)] / 0,02 = 2.000 * 0,19 / 0,02 = 19.000
Observe que, neste último cálculo, trouxemos o valor das prestações ao período 5, que é onde inicia o pagamento das prestações de R$ 2.000. Mas este não é o valor presente visto que está no mês 5, então temos que trazer os 19.000 a valor presente. Assim utilizamos agora a fórmula do valor presente (sem prestação) que é mesma dos juros compostos (descapitalizando):
C=M*(1+i)- n = como sabemos que (1+i)- 5 é igual a 0,9, temos que:
19.000 x 0,9 = 17.100
Para finalizar basta somarmos o valor obtido com o valor anterior: 5.000 + 17.100 = 22.100.
R: Letra D.